66 research outputs found
A novel approach to estimating Rt through infection networks: understanding regional transmission dynamics of COVID-19
IntroductionThe effective reproduction number (Rt) is a key indicator for monitoring and controlling infectious diseases such as COVID-19, where transmission patterns can differ substantially across demographics, regions, and phases of the pandemic. In this study, we propose a novel, network-based approach to empirically estimate Rt using detailed transmission data from South Korea. By reconstructing infector–infectee pairs, our method incorporates local factors like mobility and social distancing, offering a more precise perspective than traditional methods.MethodsWe acquired infector–infectee pair data from the Korea Disease Control and Prevention Agency (KDCA) for 2020–2021 and built infection networks to derive empirical Rt. This framework allows us to examine regional differences and the effects of social distancing measures. We also compared our results with Cori's Rt, which employs incidence data and serial interval distributions, to highlight the advantages of an infection network-based strategy.ResultsOur empirical Rt uncovered three distinct patterns. Early in the outbreak, when case numbers were low, Rt remained near 1, indicating limited transmission. During superspreading events, our estimates showed sharper peaks than Cori's method, demonstrating higher sensitivity to sudden changes. As the Delta variant emerged, our Rt values converged with Cori's, underscoring the utility of network-based methods for capturing nuanced shifts during high-variability phases.DiscussionIncorporating infection networks into Rt estimation thus provides decision-makers with timely insights for targeted interventions. Empirically reconstructing infection networks and directly estimating Rt reveal real-time transmission dynamics often overlooked by aggregated approaches. This method can significantly improve outbreak forecasts, inform more precise public health policies, and strengthen pandemic preparedness
Investigation of the mechanism of the anomalous Hall effects in Cr2Te3/(BiSb)2(TeSe)3 heterostructure
The interplay between ferromagnetism and the non-trivial topology has
unveiled intriguing phases in the transport of charges and spins. For example,
it is consistently observed the so-called topological Hall effect (THE)
featuring a hump structure in the curve of the Hall resistance (Rxy) vs. a
magnetic field (H) of a heterostructure consisting of a ferromagnet (FM) and a
topological insulator (TI). The origin of the hump structure is still
controversial between the topological Hall effect model and the multi-component
anomalous Hall effect (AHE) model. In this work, we have investigated a
heterostructure consisting of BixSb2-xTeySe3-y (BSTS) and Cr2Te3 (CT), which
are well-known TI and two-dimensional FM, respectively. By using the so-called
minor-loop measurement, we have found that the hump structure observed in the
CT/BSTS is more likely to originate from two AHE channels. Moreover, by
analyzing the scaling behavior of each amplitude of two AHE with the
longitudinal resistivities of CT and BSTS, we have found that one AHE is
attributed to the extrinsic contribution of CT while the other is due to the
intrinsic contribution of BSTS. It implies that the proximity-induced
ferromagnetic layer inside BSTS serves as a source of the intrinsic AHE,
resulting in the hump structure explained by the two AHE model
Correction: Investigation of the mechanism of the anomalous Hall effects inCr2Te3/(BiSb)2(TeSe)3 heterostructure
Investigation of the mechanism of the anomalous Hall effects in Cr2Te3/(BiSb)2(TeSe)3 heterostructure
The interplay between ferromagnetism and the non-trivial topology has unveiled intriguing phases in the transport of charges and spins. For example, it is consistently observed the so-called topological Hall effect (THE) featuring a hump structure in the curve of the Hall resistance (Rxy) vs. a magnetic field (H) of a heterostructure consisting of a ferromagnet (FM) and a topological insulator (TI). The origin of the hump structure is still controversial between the topological Hall effect model and the multi-component anomalous Hall effect (AHE) model. In this work, we have investigated a heterostructure consisting of BixSb2−xTeySe3−y (BSTS) and Cr2Te3 (CT), which are well-known TI and two-dimensional FM, respectively. By using the so-called minor-loop measurement, we have found that the hump structure observed in the CT/BSTS is more likely to originate from two AHE channels. Moreover, by analyzing the scaling behavior of each amplitude of two AHE with the longitudinal resistivities of CT and BSTS, we have found that one AHE is attributed to the extrinsic contribution of CT while the other is due to the intrinsic contribution of BSTS. It implies that the proximity-induced ferromagnetic layer inside BSTS serves as a source of the intrinsic AHE, resulting in the hump structure explained by the two AHE model.This work was supported by the Korea Institute of Science and Technol‑ogy (KIST) through 2E31550 and by the National Research Foundation program through NRF-2021M3F3A2A03017782, 2021M3F3A2A01037814, 2021M3F3A2A01037738, 2021R1A2C3011450, and 2020R1A2C200373211,[Innovative Talent Education Program for Smart City] by MOLI
HyperCLOVA X Technical Report
We introduce HyperCLOVA X, a family of large language models (LLMs) tailored
to the Korean language and culture, along with competitive capabilities in
English, math, and coding. HyperCLOVA X was trained on a balanced mix of
Korean, English, and code data, followed by instruction-tuning with
high-quality human-annotated datasets while abiding by strict safety guidelines
reflecting our commitment to responsible AI. The model is evaluated across
various benchmarks, including comprehensive reasoning, knowledge, commonsense,
factuality, coding, math, chatting, instruction-following, and harmlessness, in
both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in
Korean backed by a deep understanding of the language and cultural nuances.
Further analysis of the inherent bilingual nature and its extension to
multilingualism highlights the model's cross-lingual proficiency and strong
generalization ability to untargeted languages, including machine translation
between several language pairs and cross-lingual inference tasks. We believe
that HyperCLOVA X can provide helpful guidance for regions or countries in
developing their sovereign LLMs.Comment: 44 pages; updated authors list and fixed author name
Enhanced percolation of switchable metallic domain in metal-nanoparticle-embedded Mott switches
2
All-Solid-State Synaptic Transistors with High-Temperature Stability Using Proton Pump Gating of Strongly Correlated Materials
Enhanced percolation of switchable metallic domain in metal-nanoparticle embedded Mott switches
1
- …
