66 research outputs found

    A novel approach to estimating Rt through infection networks: understanding regional transmission dynamics of COVID-19

    Get PDF
    IntroductionThe effective reproduction number (Rt) is a key indicator for monitoring and controlling infectious diseases such as COVID-19, where transmission patterns can differ substantially across demographics, regions, and phases of the pandemic. In this study, we propose a novel, network-based approach to empirically estimate Rt using detailed transmission data from South Korea. By reconstructing infector–infectee pairs, our method incorporates local factors like mobility and social distancing, offering a more precise perspective than traditional methods.MethodsWe acquired infector–infectee pair data from the Korea Disease Control and Prevention Agency (KDCA) for 2020–2021 and built infection networks to derive empirical Rt. This framework allows us to examine regional differences and the effects of social distancing measures. We also compared our results with Cori's Rt, which employs incidence data and serial interval distributions, to highlight the advantages of an infection network-based strategy.ResultsOur empirical Rt uncovered three distinct patterns. Early in the outbreak, when case numbers were low, Rt remained near 1, indicating limited transmission. During superspreading events, our estimates showed sharper peaks than Cori's method, demonstrating higher sensitivity to sudden changes. As the Delta variant emerged, our Rt values converged with Cori's, underscoring the utility of network-based methods for capturing nuanced shifts during high-variability phases.DiscussionIncorporating infection networks into Rt estimation thus provides decision-makers with timely insights for targeted interventions. Empirically reconstructing infection networks and directly estimating Rt reveal real-time transmission dynamics often overlooked by aggregated approaches. This method can significantly improve outbreak forecasts, inform more precise public health policies, and strengthen pandemic preparedness

    Investigation of the mechanism of the anomalous Hall effects in Cr2Te3/(BiSb)2(TeSe)3 heterostructure

    Full text link
    The interplay between ferromagnetism and the non-trivial topology has unveiled intriguing phases in the transport of charges and spins. For example, it is consistently observed the so-called topological Hall effect (THE) featuring a hump structure in the curve of the Hall resistance (Rxy) vs. a magnetic field (H) of a heterostructure consisting of a ferromagnet (FM) and a topological insulator (TI). The origin of the hump structure is still controversial between the topological Hall effect model and the multi-component anomalous Hall effect (AHE) model. In this work, we have investigated a heterostructure consisting of BixSb2-xTeySe3-y (BSTS) and Cr2Te3 (CT), which are well-known TI and two-dimensional FM, respectively. By using the so-called minor-loop measurement, we have found that the hump structure observed in the CT/BSTS is more likely to originate from two AHE channels. Moreover, by analyzing the scaling behavior of each amplitude of two AHE with the longitudinal resistivities of CT and BSTS, we have found that one AHE is attributed to the extrinsic contribution of CT while the other is due to the intrinsic contribution of BSTS. It implies that the proximity-induced ferromagnetic layer inside BSTS serves as a source of the intrinsic AHE, resulting in the hump structure explained by the two AHE model

    Investigation of the mechanism of the anomalous Hall effects in Cr2Te3/(BiSb)2(TeSe)3 heterostructure

    Get PDF
    The interplay between ferromagnetism and the non-trivial topology has unveiled intriguing phases in the transport of charges and spins. For example, it is consistently observed the so-called topological Hall effect (THE) featuring a hump structure in the curve of the Hall resistance (Rxy) vs. a magnetic field (H) of a heterostructure consisting of a ferromagnet (FM) and a topological insulator (TI). The origin of the hump structure is still controversial between the topological Hall effect model and the multi-component anomalous Hall effect (AHE) model. In this work, we have investigated a heterostructure consisting of BixSb2−xTeySe3−y (BSTS) and Cr2Te3 (CT), which are well-known TI and two-dimensional FM, respectively. By using the so-called minor-loop measurement, we have found that the hump structure observed in the CT/BSTS is more likely to originate from two AHE channels. Moreover, by analyzing the scaling behavior of each amplitude of two AHE with the longitudinal resistivities of CT and BSTS, we have found that one AHE is attributed to the extrinsic contribution of CT while the other is due to the intrinsic contribution of BSTS. It implies that the proximity-induced ferromagnetic layer inside BSTS serves as a source of the intrinsic AHE, resulting in the hump structure explained by the two AHE model.This work was supported by the Korea Institute of Science and Technol‑ogy (KIST) through 2E31550 and by the National Research Foundation program through NRF-2021M3F3A2A03017782, 2021M3F3A2A01037814, 2021M3F3A2A01037738, 2021R1A2C3011450, and 2020R1A2C200373211,[Innovative Talent Education Program for Smart City] by MOLI

    HyperCLOVA X Technical Report

    Full text link
    We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.Comment: 44 pages; updated authors list and fixed author name

    A sample design for the survey on goodwill in retail properties

    No full text
    corecore