2,483 research outputs found
Calculation of the current noise spectrum in mesoscopic transport: an efficient quantum master equation approach
Based on our recent work on quantum transport [Li et al., Phys. Rev. B 71,
205304 (2005)], where the calculation of transport current by means of quantum
master equation was presented, in this paper we show how an efficient
calculation can be performed for the transport noise spectrum. Compared to the
longstanding classical rate equation or the recently proposed quantum
trajectory method, the approach presented in this paper combines their
respective advantages, i.e., it enables us to tackle both the many-body Coulomb
interactionand quantum coherence on equal footing and under a wide range of
setup circumstances. The practical performance and advantages are illustrated
by a number of examples, where besides the known results and new insights
obtained in a transparent manner, we find that this alternative approach is
much simpler than other well-known full quantum mechanical methods such as the
Landauer-B\"uttiker scattering matrix theory and the nonequilibrium Green's
function technique.Comment: 13 pages, 3 figures, submitted to PR
Full counting statistics of renormalized dynamics in open quantum transport system
The internal dynamics of a double quantum dot system is renormalized due to
coupling respectively with transport electrodes and a dissipative heat bath.
Their essential differences are identified unambiguously in the context of full
counting statistics. The electrode coupling caused level detuning
renormalization gives rise to a fast-to-slow transport mechanism, which is not
resolved at all in the average current, but revealed uniquely by pronounced
super-Poissonian shot noise and skewness. The heat bath coupling introduces an
interdot coupling renormalization, which results in asymmetric Fano factor and
an intriguing change of line shape in the skewness.Comment: 9 pages, 5 figure
MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects
BACKGROUND A current challenge of microRNA (miRNA) research is the identification of biologically relevant miRNA:target gene relationships. In plants, high miRNA:target gene complementarity has enabled accurate target predictions, and slicing of target mRNAs has facilitated target validation through rapid amplification of 5' cDNA ends (5'-RACE) analysis. Together, these approaches have identified more than 20 targets potentially regulated by the deeply conserved miR159 family in Arabidopsis, including eight MYB genes with highly conserved miR159 target sites. However, genetic analysis has revealed the functional specificity of the major family members, miR159a and miR159b is limited to only two targets, MYB33 and MYB65. Here, we examine the functional role of miR159 regulation for the other potential MYB target genes. RESULTS For these target genes, functional analysis failed to identify miR159 regulation that resulted in any major phenotypic impact, either at the morphological or molecular level. This appears to be mainly due to the quiescent nature of the remaining family member, MIR159c. Although its expression overlaps in a temporal and spatial cell-specific manner with a subset of these targets in anthers, the abundance of miR159c is extremely low and concomitantly a mir159c mutant displays no anther defects. Examination of potential miR159c targets with conserved miR159 binding sites found neither their spatial or temporal expression domains appeared miR159 regulated, despite the detection of miR159-guided cleavage products by 5'-RACE. Moreover, expression of a miR159-resistant target (mMYB101) resulted predominantly in plants that are indistinguishable from wild type. Plants that displayed altered morphological phenotypes were found to be ectopically expressing the mMYB101 transgene, and hence were misrepresentative of the in vivo functional role of miR159. CONCLUSIONS This study presents a novel explanation for a paradox common to plant and animal miRNA systems, where among many potential miRNA-target relationships usually only a few appear physiologically relevant. The identification of a quiescent miR159c:target gene regulatory module in anthers provides a likely rationale for the presence of conserved miR159 binding sites in many targets for which miR159 regulation has no obvious functional role. Remnants from the demise of such modules may lead to an overestimation of miRNA regulatory complexity when investigated using bioinformatic, 5'-RACE or transgenic approaches.RSA was funded by an ANU postgraduate scholarship and by a CSIRO Emerging Science Initiative. JL is the recipient of an ANU international student postgraduate scholarship. This research was supported by an Australian Research Council grant DP0773270
Global exponential stability for coupled systems of neutral delay differential equations
In this paper, a novel class of neutral delay differential equations (NDDEs) is presented. By using the Razumikhin method and Kirchhoff's matrix tree theorem in graph theory, the global exponential stability for such NDDEs is investigated. By constructing an appropriate Lyapunov function, two different kinds of sufficient criteria which ensure the global exponential stability of NDDEs are derived in the form of Lyapunov functions and coefficients of NDDEs, respectively. A numerical example is provided to demonstrate the effectiveness of the theoretical results
Accelerating ferroic ageing dynamics upon cooling
Once a structural glass is formed, its relaxation time will increase exponentially with decreasing temperature. Thus, the glass has little chance of transforming into a crystal upon further cooling to zero Kelvin. However, a spontaneous transition upon cooling from amorphous to long-range ordered ferroic states has been observed experimentally in ferroelastic, ferroelectric and ferromagnetic materials. The origin for this obvious discrepancy is discussed here conceptually. We present a combined theoretical and numerical study of this phenomenon and show that the diffusive and displacive atomic processes that take place in structural glass and amorphous ferroics, respectively, lead to markedly different temperature-dependent relaxation behaviors, one being ‘colder is slower’ and the other being ‘colder is faster’.National Basic Research Program of China (2012CB619402)National Basic Research Program of China (2014CB644003)National Key Basic Research Program of China (51671156)National Basic Research Program of China 111 Project (B06025)National Science Foundation (U.S.). Division of Materials Research (DMR-1410322)National Science Foundation (U.S.). Division of Materials Research (DMR-1410636
- …
