3,950 research outputs found
Optimizing Coordinated Vehicle Platooning: An Analytical Approach Based on Stochastic Dynamic Programming
Platooning connected and autonomous vehicles (CAVs) can improve traffic and
fuel efficiency. However, scalable platooning operations require junction-level
coordination, which has not been well studied. In this paper, we study the
coordination of vehicle platooning at highway junctions. We consider a setting
where CAVs randomly arrive at a highway junction according to a general renewal
process. When a CAV approaches the junction, a system operator determines
whether the CAV will merge into the platoon ahead according to the positions
and speeds of the CAV and the platoon. We formulate a Markov decision process
to minimize the discounted cumulative travel cost, i.e. fuel consumption plus
travel delay, over an infinite time horizon. We show that the optimal policy is
threshold-based: the CAV will merge with the platoon if and only if the
difference between the CAV's and the platoon's predicted times of arrival at
the junction is less than a constant threshold. We also propose two
ready-to-implement algorithms to derive the optimal policy. Comparison with the
classical value iteration algorithm implies that our approach explicitly
incorporating the characteristics of the optimal policy is significantly more
efficient in terms of computation. Importantly, we show that the optimal policy
under Poisson arrivals can be obtained by solving a system of integral
equations. We also validate our results in simulation with Real-time Strategy
(RTS) using real traffic data. The simulation results indicate that the
proposed method yields better performance compared with the conventional
method
Domain Agnostic Real-Valued Specificity Prediction
Sentence specificity quantifies the level of detail in a sentence,
characterizing the organization of information in discourse. While this
information is useful for many downstream applications, specificity prediction
systems predict very coarse labels (binary or ternary) and are trained on and
tailored toward specific domains (e.g., news). The goal of this work is to
generalize specificity prediction to domains where no labeled data is available
and output more nuanced real-valued specificity ratings.
We present an unsupervised domain adaptation system for sentence specificity
prediction, specifically designed to output real-valued estimates from binary
training labels. To calibrate the values of these predictions appropriately, we
regularize the posterior distribution of the labels towards a reference
distribution. We show that our framework generalizes well to three different
domains with 50%~68% mean absolute error reduction than the current
state-of-the-art system trained for news sentence specificity. We also
demonstrate the potential of our work in improving the quality and
informativeness of dialogue generation systems.Comment: AAAI 2019 camera read
How to Train Your Dragon: Tamed Warping Network for Semantic Video Segmentation
Real-time semantic segmentation on high-resolution videos is challenging due
to the strict requirements of speed. Recent approaches have utilized the
inter-frame continuity to reduce redundant computation by warping the feature
maps across adjacent frames, greatly speeding up the inference phase. However,
their accuracy drops significantly owing to the imprecise motion estimation and
error accumulation. In this paper, we propose to introduce a simple and
effective correction stage right after the warping stage to form a framework
named Tamed Warping Network (TWNet), aiming to improve the accuracy and
robustness of warping-based models. The experimental results on the Cityscapes
dataset show that with the correction, the accuracy (mIoU) significantly
increases from 67.3% to 71.6%, and the speed edges down from 65.5 FPS to 61.8
FPS. For non-rigid categories such as "human" and "object", the improvements of
IoU are even higher than 18 percentage points
- …
