3,950 research outputs found

    Optimizing Coordinated Vehicle Platooning: An Analytical Approach Based on Stochastic Dynamic Programming

    Full text link
    Platooning connected and autonomous vehicles (CAVs) can improve traffic and fuel efficiency. However, scalable platooning operations require junction-level coordination, which has not been well studied. In this paper, we study the coordination of vehicle platooning at highway junctions. We consider a setting where CAVs randomly arrive at a highway junction according to a general renewal process. When a CAV approaches the junction, a system operator determines whether the CAV will merge into the platoon ahead according to the positions and speeds of the CAV and the platoon. We formulate a Markov decision process to minimize the discounted cumulative travel cost, i.e. fuel consumption plus travel delay, over an infinite time horizon. We show that the optimal policy is threshold-based: the CAV will merge with the platoon if and only if the difference between the CAV's and the platoon's predicted times of arrival at the junction is less than a constant threshold. We also propose two ready-to-implement algorithms to derive the optimal policy. Comparison with the classical value iteration algorithm implies that our approach explicitly incorporating the characteristics of the optimal policy is significantly more efficient in terms of computation. Importantly, we show that the optimal policy under Poisson arrivals can be obtained by solving a system of integral equations. We also validate our results in simulation with Real-time Strategy (RTS) using real traffic data. The simulation results indicate that the proposed method yields better performance compared with the conventional method

    Domain Agnostic Real-Valued Specificity Prediction

    Full text link
    Sentence specificity quantifies the level of detail in a sentence, characterizing the organization of information in discourse. While this information is useful for many downstream applications, specificity prediction systems predict very coarse labels (binary or ternary) and are trained on and tailored toward specific domains (e.g., news). The goal of this work is to generalize specificity prediction to domains where no labeled data is available and output more nuanced real-valued specificity ratings. We present an unsupervised domain adaptation system for sentence specificity prediction, specifically designed to output real-valued estimates from binary training labels. To calibrate the values of these predictions appropriately, we regularize the posterior distribution of the labels towards a reference distribution. We show that our framework generalizes well to three different domains with 50%~68% mean absolute error reduction than the current state-of-the-art system trained for news sentence specificity. We also demonstrate the potential of our work in improving the quality and informativeness of dialogue generation systems.Comment: AAAI 2019 camera read

    How to Train Your Dragon: Tamed Warping Network for Semantic Video Segmentation

    Full text link
    Real-time semantic segmentation on high-resolution videos is challenging due to the strict requirements of speed. Recent approaches have utilized the inter-frame continuity to reduce redundant computation by warping the feature maps across adjacent frames, greatly speeding up the inference phase. However, their accuracy drops significantly owing to the imprecise motion estimation and error accumulation. In this paper, we propose to introduce a simple and effective correction stage right after the warping stage to form a framework named Tamed Warping Network (TWNet), aiming to improve the accuracy and robustness of warping-based models. The experimental results on the Cityscapes dataset show that with the correction, the accuracy (mIoU) significantly increases from 67.3% to 71.6%, and the speed edges down from 65.5 FPS to 61.8 FPS. For non-rigid categories such as "human" and "object", the improvements of IoU are even higher than 18 percentage points
    corecore