19 research outputs found
Suppression of Estrogen Receptor Transcriptional Activity by Connective Tissue Growth Factor
Secreted growth factors have been shown to stimulate the transcriptional activity of estrogen receptors (ER) that are responsible for many biological processes. However, whether these growth factors physically interact with ER remains unclear. Here, we show for the first time that connective tissue growth factor (CTGF) physically and functionally associates with ER. CTGF interacted with ER both in vitro and in vivo. CTGF interacted with ER DNA-binding domain. ER interaction region in CTGF was mapped to the thrombospondin type I repeat, a cell attachment motif. Overexpression of CTGF inhibited ER transcriptional activity as well as the expression of estrogen-responsive genes, including pS2 and cathepsin D. Reduction of endogenous CTGF with CTGF small interfering RNA enhanced ER transcriptional activity. The interaction between CTGF and ER is required for the repression of estrogen-responsive transcription by CTGF. Moreover, CTGF reduced ER protein expression, whereas the CTGF mutant that did not repress ER transcriptional activity also did not alter ER protein levels. The results suggested the transcriptional regulation of estrogen signaling through interaction between CTGF and ER, and thus may provide a novel mechanism by which cross-talk between secreted growth factor and ER signaling pathways occurs
Surface-enhanced Raman spectroscopy of morphine in silver colloid
National Natural Science Fundation of China [60778046]; Project of Fujian Province [200810015, 2008J0016]; Project of Fujian Key Lab of Semiconductors and Applications, Xiamen University; Project of Fujian Development and Reform Commission [2005-847]We report the surface-enhanced Raman (SERS) spectra of morphine in silver colloid, and study the silver colloid enhanced effects on the Raman scattering of morphine. The Raman bands of morphine are assigned to certain molecule vibrations. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. The potential applications of SERS in quantitative measurement of the morphine samples are demonstrated. By using a proper Raman band of morphine, the detection limit of morphine in silver sol is found to be 1.5 ng/ml. The result suggests that it is of great significance to use SERS in illicit drug morphine inspection
Efficacy of Postoperative Adjuvant Transcatheter Arterial Chemoembolization in Hepatocellular Carcinoma Patients with Mesenchymal Circulating Tumor Cell
Corrigendum to “A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection” [Nanomed Nanotechnol Biol Med. 2011;7:655–663]
Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy
Gold Nanoparticle Based Surface-Enhanced Raman Scattering Spectroscopy of Cancerous and Normal Nasopharyngeal Tissues under Near-Infrared Laser Excitation
The capabilities of using gold nanoparticle based near-infrared surface-enhanced Raman scattering (SERS) to obtain biochemical information with high spatial resolution from human nasopharyngeal tissue were presented in this paper. The gold nanoparticles used have a mean diameter of 43 nm with a standard deviation of 6 nm. The SERS bands of nasopharyngeal tissue were assigned to known molecular vibrations of nucleic acids, amino acids, proteins, and metabolites. We also observed the blinking phenomenon at the tissue level when measuring the nasopharyngeal tissue SERS spectra, most frequently in signal intensity but also occasionally in peak positions. This phenomenon is excitation light intensity dependent. This work demonstrated great potential for using SERS imaging for distinguishing cancerous and normal nasopharyngeal tissues on frozen sections without using any dye labeling or other chemical species as functionalized binding sites. </jats:p
