9 research outputs found

    Formation and evolution of galaxy dark matter halos and their substructure

    Get PDF
    We use the ``Via Lactea'' simulation to study the co-evolution of a Milky Way-size LambdaCDM halo and its subhalo population. While most of the host halo mass is accreted over the first 6 Gyr in a series of major mergers, the physical mass distribution [not M_vir(z)] remains practically constant since z=1. The same is true in a large sample of LambdaCDM galaxy halos. Subhalo mass loss peaks between the turnaround and virialization epochs of a given mass shell, and declines afterwards. 97% of the z=1 subhalos have a surviving bound remnant at the present epoch. The retained mass fraction is larger for initially lighter subhalos: satellites with maximum circular velocities Vmax=10 km/s at z=1 have today about 40% of their mass back then. At the first pericenter passage a larger average mass fraction is lost than during each following orbit. Tides remove mass in substructure from the outside in, leading to higher concentrations compared to field halos of the same mass. This effect, combined with the earlier formation epoch of the inner satellites, results in strongly increasing subhalo concentrations towards the Galactic center. We present individual evolutionary tracks and present-day properties of the likely hosts of the dwarf satellites around the Milky Way. The formation histories of ``field halos'' that lie today beyond the Via Lactea host are found to strongly depend on the density of their environment. This is caused by tidal mass loss that affects many field halos on eccentric orbits.Comment: 20 pages, 18 figures. Figures 6,7 and 8 corrected in this version, for details see the erratum in ApJ 679, 1680 and http://www.ucolick.org/~diemand/vl/publ/vlevolerr.pdf. Data, movies and images are available at http://www.ucolick.org/~diemand/vl

    The shapes, orientation, and alignment of Galactic dark matter subhalos

    Full text link
    We present a study of the shapes, orientations, and alignments of Galactic dark matter subhalos in the ``Via Lactea'' simulation of a Milky Way-size LCDM host halo. Whereas isolated dark matter halos tend to be prolate, subhalos are predominantly triaxial. Overall subhalos are more spherical than the host halo, with minor to major and intermediate to major axis ratios of 0.68 and 0.83, respectively. Like isolated halos, subhalos tend to be less spherical in their central regions. The principal axis ratios are independent of subhalo mass, when the shapes are measured within a physical scale like r_Vmax, the radius of the peak of the circular velocity curve. Subhalos tend to be slightly more spherical closer to the host halo center. The spatial distribution of the subhalos traces the prolate shape of the host halo when they are selected by the largest V_max they ever had, i.e. before they experienced strong tidal mass loss. The subhalos' orientation is not random: the major axis tends to align with the direction towards the host halo center. This alignment disappears for halos beyond 3 r_200 and is more pronounced when the shapes are measured in the outer regions of the subhalos. The radial alignment is preserved during a subhalo's orbit and they become elongated during pericenter passage, indicating that the alignment is likely caused by the host halo's tidal forces. These tidal interactions with the host halo act to make subhalos rounder over time.Comment: 12 pages, 11 figures, submitted to ApJ, v2: corrected typo in abstract ("[...] subhalos tend be less spherical in their central regions."), added a few reference

    Density Profiles of Cold Dark Matter Substructure: Implications for the Missing Satellites Problem

    Full text link
    The structural evolution of substructure in cold dark matter (CDM) models is investigated combining ``low-resolution'' satellites from cosmological N-body simulations of parent halos with N=10^7 particles with high-resolution individual subhalos orbiting within a static host potential. We show that, as a result of mass loss, convergence in the central density profiles requires the initial satellites to be resolved with N=10^7 particles and parsec-scale force resolution. We find that the density profiles of substructure halos can be well fitted with a power-law central slope that is unmodified by tidal forces even after the tidal stripping of over 99% of the initial mass and an exponential cutoff in the outer parts. The solution to the missing-satellites problem advocated by Stoehr et al. in 2002 relied on the flattening of the dark matter (DM) halo central density cusps by gravitational tides, enabling the observed satellites to be embedded within DM halos with maximum circular velocities as large as 60 km/s. In contrast, our results suggest that tidal interactions do not provide the mechanism for associating the dwarf spheroidal satellites (dSphs) of the Milky Way with the most massive substructure halos expected in a CDM universe. We compare the predicted velocity dispersion profiles of Fornax and Draco to observations, assuming that they are embedded in CDM halos. Models with isotropic and tangentially anisotropic velocity distributions for the stellar component fit the data only if the surrounding DM halos have maximum circular velocities in the range 20-35 km/s. If the dSphs are embedded within halos this large then the overabundance of satellites within the concordance LCDM cosmological model is significantly alleviated, but this still does not provide the entire solution.Comment: Accepted for publication in ApJ, 17 pages, 9 figures, LaTeX (uses emulateapj5.sty

    Early Supersymmetric Cold Dark Matter Substructure

    No full text

    A GLOBULAR CLUSTER TOWARD M87 WITH A RADIAL VELOCITY &lt; − 1000 km s<sup>−1</sup>: THE FIRST HYPERVELOCITY CLUSTER

    Full text link
    ABSTRACT We report the discovery of an object near M87 in the Virgo Cluster with an extraordinary blueshift of −1025 km s−1, offset from the systemic velocity by &gt;2300 km s−1. Evaluation of photometric and spectroscopic data provides strong evidence that this object is a distant massive globular cluster, which we call HVGC-1 in analogy to Galactic hypervelocity stars. We consider but disfavor more exotic interpretations, such as a system of stars bound to a recoiling black hole. The odds of observing an outlier as extreme as HVGC-1 in a virialized distribution of intracluster objects are small; it appears more likely that the cluster was (or is being) ejected from Virgo following a three-body interaction. The nature of the interaction is unclear, and could involve either a subhalo or a binary supermassive black hole at the center of M87.</jats:p
    corecore