71 research outputs found

    Identifying genetic variants underlying medication-induced osteonecrosis of the jaw in cancer and osteoporosis: a case control study

    Get PDF
    Background Bisphosphonate-induced osteonecrosis of the jaw (BRONJ) presents with a typical pattern of jaw necrosis in patients who have been prescribed bisphosphonates (BPs) and other antiangiogenetic drugs to treat osteoporosis or bone-related complications of cancer. Methods This study divided 38 patients with BRONJ into two groups according to the prescribing causes: cancer (n = 13) and osteoporosis (n = 25), and underwent whole exome sequencing and compared them with normal controls (n = 90). To identify candidate genes and variants, we conducted three analyses: a traditional genetic model, gene-wise variant score burden, and rare-variant analysis methods. Results The stop-gain mutation (rs117889746) of the PZP gene in the BRONJ cancer group was significantly identified in the additive trend model analysis. In the cancer group, ARIDS, HEBP1, LTBP1, and PLVAP were identified as candidate genes. In the osteoporosis group, VEGFA, DFFA, and FAM193A genes showed a significant association. No significant genes were identified in the rare-variant analysis pipeline. Biologically accountable functions related to BRONJ occurrence-angiogenesis-related signaling (VEGFA and PLVAP genes), TGF-β signaling (LTBP1 and PZP genes), heme toxicity (HEBP1) and osteoblast maturation (ARIDS)-were shown in candidate genes. Conclusion This study showed that the candidate causative genes contributing to the development of BRONJ differ according to the BP dose and background disease.This work was supported by the Education and Research Encouragement Fund of Seoul National University Hospital and the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2018R1D1A1A02086109). There are no conficts of interest to declare

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, generally lacked quantitative measurements, were mostly restricted to data from single countries. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change+/-100) revealed a mean reduction of smell (-79.7+/- 28.7, mean+/- SD), taste (-69.0+/- 32.6), and chemesthetic (-37.3+/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms

    Hedonic scaling: A review of methods and theory

    Full text link

    Oral Referral

    Full text link

    Taste perception of cyclic oligosaccharides: α, β, and γ cyclodextrins

    Full text link
    Abstract Oligosaccharides, a subclass of complex carbohydrates, occur both naturally in foods and as a result of oral starch digestion. We have previously shown that humans can taste maltooligosaccharides (MOS) and that their detection is independent of the canonical sweet taste receptor. While MOSs most commonly occur in a linear form, they can also exist in cyclic structures, referred to as cyclodextrins (CD). The aim of this study was to investigate how the structure of the MOS backbone (i.e. cyclic form) and the size (i.e. degree of polymerization; DP) affect their taste perception. We tested taste detection of cyclodextrins with DP of 6, 7, and 8 (i.e. α-, β-, and γ-CD, respectively) in the presence and absence of lactisole, a sweet receptor antagonist. We found that subjects could detect the taste of cyclodextrins in aqueous solutions at a significant level (P &amp;lt; 0.05), but were not able to detect them in the presence of lactisole (P &amp;gt; 0.05). These findings suggest that the cyclodextrins, unlike their linear analogs, are ligands of the human sweet taste receptor, hT1R2/hT1R3. Study findings are discussed in terms of how chemical structures may contribute to tastes of saccharides.</jats:p

    Effects of Stimulus Intensity on Odor Enhancement by Taste

    Full text link

    Retronasal odor enhancement by salty and umami tastes

    Full text link
    corecore