29 research outputs found

    A galU mutant of francisella tularensis is attenuated for virulence in a murine pulmonary model of tularemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of studies have revealed that <it>Francisella tularensis </it>(FT) suppresses innate immune responses such as chemokine/cytokine production and neutrophil recruitment in the lungs following pulmonary infection via an unidentified mechanism. The ability of FT to evade early innate immune responses could be a very important virulence mechanism for this highly infectious bacterial pathogen.</p> <p>Results</p> <p>Here we describe the characterization of a <it>galU </it>mutant strain of FT live vaccine strain (LVS). We show that the <it>galU </it>mutant was highly attenuated in a murine model of tularemia and elicited more robust innate immune responses than the wild-type (WT) strain. These studies document that the kinetics of chemokine expression and neutrophil recruitment into the lungs of mice challenged with the <it>galU </it>mutant strain are significantly more rapid than observed with WT FT, despite the fact that there were no observed differences in TLR2 or TLR4 signaling or replication/dissemination kinetics during the early stages of infection. We also show that the <it>galU </it>mutant had a hypercytotoxic phenotype and more rapidly induced the production of IL-1β following infection either <it>in vitro </it>or <it>in vivo</it>, indicating that attenuation of the <it>galU </it>mutant strain may be due (in part) to more rapid activation of the inflammasome and/or earlier death of FT infected cells. Furthermore, we show that infection of mice with the <it>galU </it>mutant strain elicits protective immunity to subsequent challenge with WT FT.</p> <p>Conclusions</p> <p>Disruption of the <it>galU </it>gene of FTLVS has little (if any) effect on <it>in vivo </it>infectivity, replication, or dissemination characteristics, but is highly attenuating for virulence. The attenuated phenotype of this mutant strain of FT appears to be related to its increased ability to induce innate inflammatory responsiveness, resulting in more rapid recruitment of neutrophils to the lungs following pneumonic infection, and/or to its ability to kill infected cells in an accelerated fashion. These results have identified two potentially important virulence mechanisms used by FT. These findings could also have implications for design of a live attenuated vaccine strain of FT because sublethal infection of mice with the <it>galU </it>mutant strain of FTLVS promoted development of protective immunity to WT FTLVS.</p

    Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice

    Get PDF
    © 2016 the American Physiological Society. We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle

    NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis

    Get PDF
    Modification of specific Gram-negative bacterial cell envelope components, such as capsule, O-antigen and lipid A, are often essential for the successful establishment of infection. Francisella species express lipid A molecules with unique characteristics involved in circumventing host defences, which significantly contribute to their virulence. In this study, we show that NaxD, a member of the highly conserved YdjC superfamily, is a deacetylase required for an important modification of the outer membrane component lipid A in Francisella. Mass spectrometry analysis revealed that NaxD is essential for the modification of a lipid A phosphate with galactosamine in Francisella novicida, a model organism for the study of highly virulent Francisella tularensis. Significantly, enzymatic assays confirmed that this protein is necessary for deacetylation of its substrate. In addition, NaxD was involved in resistance to the antimicrobial peptide polymyxin B and critical for replication in macrophages and in vivo virulence. Importantly, this protein is also required for lipid A modification in F. tularensis as well as Bordetella bronchiseptica. Since NaxD homologues are conserved among many Gram-negative pathogens, this work has broad implications for our understanding of host subversion mechanisms of other virulent bacteria

    Visualization of Murine Intranasal Dosing Efficiency Using Luminescent Francisella tularensis: Effect of Instillation Volume and Form of Anesthesia

    Get PDF
    Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique

    Genetics of differential susceptibility to pneumonic <i>Burkholderia pseudomallei</i> infection (INC7P.424)

    Full text link
    Abstract Burkholderia pseudomallei (Bp) is a pathogenic gram-negative bacterium that causes the severe human disease melioidosis. Bp is listed as a CDC Tier 1 select agent and is considered a potential bioterrorism agent that poses a threat to national security if intentionally released into the human population. Our goal is to use a murine model of Bp infection to gain a better understanding of the interactions between this bacterium and its hosts. We have utilized fully genotyped recombinant inbred BXD mice and a powerful array of complementary computer-based modeling algorithms and databases collectively known as the GeneNetwork. Preliminary studies revealed that Bp infection elicits phenotypically distinct innate immune responses in terms of immune cell recruitment to the lungs, survival and weight loss following pneumonic infection in parental and BXD mice. Preliminary interval mapping of our survival and weight loss phenotypic data using GeneNetwork revealed that survival is a complex trait involving loci on chromosomes 5, 7, and 9 and weight retention involves loci on chromosome 12. Furthermore, we have identified several potential candidate genes within the significant and/or suggestive interval on these chromosomes that appear to correlate with differential susceptibility to Bp infection. These results form the foundation for future work that will significantly increase our understanding of the interactions between Bp and its genetically diverse hosts.</jats:p

    Emergence and Magnitude of ML336 Resistance in Venezuelan Equine Encephalitis Virus Depend on the Microenvironment

    No full text
    RNA viruses, including Venezuelan equine encephalitis virus (VEEV), have high mutation rates that allow for rapid adaptation to selective pressures in their environment. Antiviral compounds exert one such pressure on virus populations during infections. Next-generation sequencing allows for examination of viruses at the population level, which enables tracking of low levels of single-nucleotide polymorphisms in the population over time. Therefore, the timing and extent of the emergence of resistance to antivirals can be tracked and assessed. We show here that in VEEV, the trajectory and penetration of antiviral resistance reflected the microenvironment in which the virus population replicates. In summary, we show the diversity of VEEV within a single population under antiviral pressure and two distinct cell types, and we show that population dynamics in these viruses can be examined to better understand how they evolve over time.</jats:p

    Upper Respiratory Infection Drives Clinical Signs and Inflammatory Responses Following Heterologous Challenge of SARS-CoV-2 Variants of Concern in K18 Mice

    No full text
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of several variants of concern (VOC) with increased immune evasion and transmissibility. This has motivated studies to assess protection conferred by earlier strains following infection or vaccination to each new VOC. We hypothesized that while NAbs play a major role in protection against infection and disease, a heterologous reinfection or challenge may gain a foothold in the upper respiratory tract (URT) and result in a self-limited viral infection accompanied by an inflammatory response. To test this hypothesis, we infected K18-hACE2 mice with SARS-CoV-2 USA-WA1/2020 (WA1) and, after 24 days, challenged with WA1, Alpha, or Delta. While NAb titers against each virus were similar across all cohorts prior to challenge, the mice challenged with Alpha and Delta showed weight loss and upregulation of proinflammatory cytokines in the URT and lower RT (LRT). Mice challenged with WA1 showed complete protection. We noted increased levels of viral RNA transcripts only in the URT of mice challenged with Alpha and Delta. In conclusion, our results suggested self-limiting breakthrough infections of Alpha or Delta in the URT, which correlated with clinical signs and a significant inflammatory response in mice

    Dataset for Particulate Studies and Obesity

    No full text
    Code and Raw Data for Obesity Particulate Treatment study This repository contains raw data for studies done by the Bridges Lab and our collaborators on the metabolic effects of in utero exposure to particulates containing environmentally persistent free radicals on obese adult mice. This repository contains the data for the manuscripts detailed below. The tag column indicates the state of the dataset at the indicated time.: Publication Dataset Tag E. J. Stephenson, A. Ragauskas, S. Jaligama, J. R. Redd, J. Parvathareddy, M. J. Peloquin, J. Saravia, J. Han, S. A. Cormier, D. Bridges, Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. (2016). American Journal of Physioogy - Endocrinology and Metabolism. doi:10.1152/ajpendo.00521.2015. ObesityParticulateTreatment-v1.0.0 Licence This ObesityParticulateTreatment data is made available under the Open Data Commons Attribution License: http://opendatacommons.org/licenses/by/1.0. Data Files Data files are located in the data directory The raw data in this analysis is located in data/raw and is the following files: Script Files Script files are saved in scripts folder and were analysed in this order Manuscript The manuscript files, including the manuscript, the figures, tables and supplementary data are in the manuscript directory

    Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease: room-temperature X-ray and neutron crystallography, binding thermodynamics, and antiviral activity

    No full text
    Abstract The COVID-19 pandemic continues to disrupt everyday life, with constantly emerging SARS-CoV-2 variants threatening to render current vaccines ineffective. Small-molecule antivirals can provide an important therapeutic treatment option that is subject to challenges caused by the virus variants. The viral main protease (Mpro) is critical for the virus replication and thus is considered an attractive drug target for specific protease inhibitors. We performed the design and characterization of three reversible covalent hybrid inhibitors BBH-1, BBH-2 and NBH-2, whose structures were derived from those of hepatitis C protease inhibitors boceprevir and narlaprevir. A joint X-ray/neutron structure of the Mpro/BBH-1 complex demonstrated that a Cys145 thiolate reaction with the inhibitor’s keto-warhead creates a negatively charged oxyanion, similar to that proposed for the Mpro-catalyzed peptide bond hydrolysis. Protonation states of the ionizable residues in the Mpro active site adapt to the inhibitor, which appears to be an intrinsic property of Mpro. Structural comparisons of the hybrid inhibitors with PF-07321332 revealed unconventional interactions of PF-07321332 with Mpro which may explain its more favorable enthalpy of binding and consequently higher potency. BBH-1, BBH-2 and NBH-2 demonstrated comparable antiviral properties in vitro relative to PF-07321332, making them good candidates for further design of improved antivirals.</jats:p
    corecore