232 research outputs found
Revision of Cerinomyces (Dacrymycetes, Basidiomycota) with notes on morphologically and historically related taxa
Publisher Copyright: © 2021 The AuthorsCerinomyces (Dacrymycetes, Basidiomycota) is a genus traditionally defined by corticioid basidiocarps, in contrast to the rest of the class, which is characterized by gelatinous ones. In the traditional circumscription the genus is polyphyletic, and the monotypic family Cerinomycetaceae is paraphyletic. Aiming for a more concise delimitation, we revise Cerinomyces s.l. with a novel phylogeny based on sequences of nrDNA (SSU, ITS, LSU) and protein-coding genes (RPB1, RPB2, TEF1-α). We establish that monophyletic Cerinomyces s.s. is best characterized not by the corticioid morphology, but by a combination of traits: hyphal clamps, predominantly aseptate thin-walled basidiospores, and low content of carotenoid pigments. In our updated definition, Cerinomyces s.s. encompasses five well-supported phylogenetic clades divided into two morphological groups: (i-iii) taxa with arid corticioid basidiocarps, including the generic type C. pallidus; and (iv-v) newly introduced members with gelatinous basidiocarps, like Dacrymyces enatus and D. tortus. The remaining corticioid species of Cerinomyces s.l. are morphologically distinct and belong to the Dacrymycetaceae: our analysis places the carotenoid-rich Cerinomyces canadensis close to Femsjonia, and we transfer the clamps-lacking C. grandinioides group to Dacrymyces. In addition, we address genera related to Cerinomyces s.l. historically and morphologically, such as Ceracea, Dacryonaema and Unilacryma. Overall, we describe twenty-four new species and propose nine new combinations in both Cerinomycetaceae and Dacrymycetaceae.Peer reviewe
Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest
Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a ‘pure diversity’ effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world’s stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis
Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus
The saprotrophic fungus Penicillium griseofulvum was chosen as model organism to study responses to a mixture of hexachlorocyclohexane (HCH) isomers (α-HCH, β-HCH, γ-HCH, δ-HCH) and of potentially toxic metals (vanadium, lead) in solid and liquid media. The P. griseofulvum FBL 500 strain was isolated from polluted soil containing high concentrations of HCH isomers and potentially toxic elements (Pb, V). Experiments were performed in order to analyse the tolerance/resistance of this fungus to xenobiotics, and to shed further light on fungal potential in inorganic and organic biotransformations. The aim was to examine the ecological and bioremedial potential of this fungus verifying the presence of mechanisms that allow it to transform HCH isomers and metals under different, extreme, test conditions. To our knowledge, this work is the first to provide evidence on the biotransformation of HCH mixtures, in combination with toxic metals, by a saprotrophic non-white-rot fungus and on the metabolic synergies involved
Dissimilar responses of fungal and bacterial communities to soil transplantation simulating abrupt climate changes.
Both fungi and bacteria play essential roles in regulating soil carbon cycling. To predict future carbon stability, it is imperative to understand their responses to environmental changes, which is subject to large uncertainty. As current global warming is causing range shifts toward higher latitudes, we conducted three reciprocal soil transplantation experiments over large transects in 2005 to simulate abrupt climate changes. Six years after soil transplantation, fungal biomass of transplanted soils showed a general pattern of changes from donor sites to destination, which were more obvious in bare fallow soils than in maize cropped soils. Strikingly, fungal community compositions were clustered by sites, demonstrating that fungi of transplanted soils acclimatized to the destination environment. Several fungal taxa displayed sharp changes in relative abundance, including Podospora, Chaetomium, Mortierella and Phialemonium. In contrast, bacterial communities remained largely unchanged. Consistent with the important role of fungi in affecting soil carbon cycling, 8.1%-10.0% of fungal genes encoding carbon-decomposing enzymes were significantly (p < 0.01) increased as compared with those from bacteria (5.7%-8.4%). To explain these observations, we found that fungal occupancy across samples was mainly determined by annual average air temperature and rainfall, whereas bacterial occupancy was more closely related to soil conditions, which remained stable 6 years after soil transplantation. Together, these results demonstrate dissimilar response patterns and resource partitioning between fungi and bacteria, which may have considerable consequences for ecosystem-scale carbon cycling
Tree diversity and species identity effects on soil fungi, protists and animals are context dependent
Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se
Environmental metabarcoding reveals contrasting belowground and aboveground fungal communities from poplar at a Hg phytomanagement site
Characterization of microbial communities in stressful conditions at a field level is rather scarce, especially when considering fungal communities from aboveground habitats. We aimed at characterizing fungal communities from different poplar habitats at a Hg-contaminated phytomanagement site by using Illumina-based sequencing, network analysis approach, and direct isolation of Hg-resistant fungal strains. The highest diversity estimated by the Shannon index was found for soil communities, which was negatively affected by soil Hg concentration. Among the significant correlations between soil operational taxonomic units (OTUs) in the co-occurrence network, 80% were negatively correlated revealing dominance of a pattern of mutual exclusion. The fungal communities associated with Populus roots mostly consisted of OTUs from the symbiotic guild, such as members of the Thelephoraceae, thus explaining the lowest diversity found for root communities. Additionally, root communities showed the highest network connectivity index, while rarely detected OTUs from the Glomeromycetes may have a central role in the root network. Unexpectedly high richness and diversity were found for aboveground habitats, compared to the root habitat. The aboveground habitats were dominated by yeasts from the Lalaria, Davidiella, and Bensingtonia genera, not detected in belowground habitats. Leaf and stem habitats were characterized by few dominant OTUs such as those from the Dothideomycete class producing mutual exclusion with other OTUs. Aureobasidium pullulans, one of the dominating OTUs, was further isolated from the leaf habitat, in addition to Nakazawaea populi species, which were found to be Hg resistant. Altogether, these findings will provide an improved point of reference for microbial research on inoculation-based programs of tailings dumps
Taxonomic Reliability of DNA Sequences in Public Sequence Databases: A Fungal Perspective
BACKGROUND: DNA sequences are increasingly seen as one of the primary information sources for species identification in many organism groups. Such approaches, popularly known as barcoding, are underpinned by the assumption that the reference databases used for comparison are sufficiently complete and feature correctly and informatively annotated entries. METHODOLOGY/PRINCIPAL FINDINGS: The present study uses a large set of fungal DNA sequences from the inclusive International Nucleotide Sequence Database to show that the taxon sampling of fungi is far from complete, that about 20% of the entries may be incorrectly identified to species level, and that the majority of entries lack descriptive and up-to-date annotations. CONCLUSIONS: The problems with taxonomic reliability and insufficient annotations in public DNA repositories form a tangible obstacle to sequence-based species identification, and it is manifest that the greatest challenges to biological barcoding will be of taxonomical, rather than technical, nature
High-level classification of the Fungi and a tool for evolutionary ecological analyses
High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.Peer reviewe
A software pipeline for processing and identification of fungal ITS sequences
<p>Abstract</p> <p>Background</p> <p>Fungi from environmental samples are typically identified to species level through DNA sequencing of the nuclear ribosomal internal transcribed spacer (<it>ITS</it>) region for use in BLAST-based similarity searches in the International Nucleotide Sequence Databases. These searches are time-consuming and regularly require a significant amount of manual intervention and complementary analyses. We here present software – in the form of an identification pipeline for large sets of fungal <it>ITS </it>sequences – developed to automate the BLAST process and several additional analysis steps. The performance of the pipeline was evaluated on a dataset of 350 <it>ITS </it>sequences from fungi growing as epiphytes on building material.</p> <p>Results</p> <p>The pipeline was written in Perl and uses a local installation of NCBI-BLAST for the similarity searches of the query sequences. The variable subregion <it>ITS2 </it>of the <it>ITS </it>region is extracted from the sequences and used for additional searches of higher sensitivity. Multiple alignments of each query sequence and its closest matches are computed, and query sequences sharing at least 50% of their best matches are clustered to facilitate the evaluation of hypothetically conspecific groups. The pipeline proved to speed up the processing, as well as enhance the resolution, of the evaluation dataset considerably, and the fungi were found to belong chiefly to the <it>Ascomycota</it>, with <it>Penicillium </it>and <it>Aspergillus </it>as the two most common genera. The <it>ITS2 </it>was found to indicate a different taxonomic affiliation than did the complete <it>ITS </it>region for 10% of the query sequences, though this figure is likely to vary with the taxonomic scope of the query sequences.</p> <p>Conclusion</p> <p>The present software readily assigns large sets of fungal query sequences to their respective best matches in the international sequence databases and places them in a larger biological context. The output is highly structured to be easy to process, although it still needs to be inspected and possibly corrected for the impact of the incomplete and sometimes erroneously annotated fungal entries in these databases. The open source pipeline is available for UNIX-type platforms, and updated releases of the target database are made available biweekly. The pipeline is easily modified to operate on other molecular regions and organism groups.</p
- …
