2,383 research outputs found
Modeling of a Cantilever-Based Near-Field Scanning Microwave Microscope
We present a detailed modeling and characterization of our scalable microwave
nanoprobe, which is a micro-fabricated cantilever-based scanning microwave
probe with separated excitation and sensing electrodes. Using finite-element
analysis, the tip-sample interaction is modeled as small impedance changes
between the tip electrode and the ground at our working frequencies near 1GHz.
The equivalent lumped elements of the cantilever can be determined by
transmission line simulation of the matching network, which routes the
cantilever signals to 50 Ohm feed lines. In the microwave electronics, the
background common-mode signal is cancelled before the amplifier stage so that
high sensitivity (below 1 atto-Farad capacitance changes) is obtained.
Experimental characterization of the microwave probes was performed on
ion-implanted Si wafers and patterned semiconductor samples. Pure electrical or
topographical signals can be realized using different reflection modes of the
probe.Comment: 7 figure
Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia
Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180–218 days band (~6–7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena
Multi-channel pre-beamformed data acquisition system for research on advanced ultrasound imaging methods
The lack of open access to the pre-beamformed data of an ultrasound scanner has limited the research of novel imaging methods to a few privileged laboratories. To address this need, we have developed a pre-beamformed data acquisition (DAQ) system that can collect data over 128 array elements in parallel from the Ultrasonix series of research-purpose ultrasound scanners. Our DAQ system comprises three system-level blocks: 1) a connector board that interfaces with the array probe and the scanner through a probe connector port; 2) a main board that triggers DAQ and controls data transfer to a computer; and 3) four receiver boards that are each responsible for acquiring 32 channels of digitized raw data and storing them to the on-board memory. This system can acquire pre-beamformed data with 12-bit resolution when using a 40-MHz sampling rate. It houses a 16 GB RAM buffer that is sufficient to store 128 channels of pre-beamformed data for 8000 to 25 000 transmit firings, depending on imaging depth; corresponding to nearly a 2-s period in typical imaging setups. Following the acquisition, the data can be transferred through a USB 2.0 link to a computer for offline processing and analysis. To evaluate the feasibility of using the DAQ system for advanced imaging research, two proof-of-concept investigations have been conducted on beamforming and plane-wave B-flow imaging. Results show that adaptive beamforming algorithms such as the minimum variance approach can generate sharper images of a wire cross-section whose diameter is equal to the imaging wavelength (150 μm in our example). Also, planewave B-flow imaging can provide more consistent visualization of blood speckle movement given the higher temporal resolution of this imaging approach (2500 fps in our example). © 2012 IEEE.published_or_final_versio
Managing Climate Risk
At the heart of the traditional approach to strategy in the climate change dilemma lies the assumption that the global community, by applying a set of powerful analytical tools, can predict the future of climate change accurately enough to choose a clear strategic direction for it. We claim that this approach might involve underestimating uncertainty in order to lay out a vision of future events sufficiently precise to be captured in a discounted cost flow analysis in integrated assessment models. However, since the future of climate change is truly uncertain, this approach might at best be marginally helpful and at worst downright dangerous: underestimating uncertainty can lead to strategies that do not defend the world against unexpected and sometimes even catastrophic threats. Another danger lies on the other extreme: if the global community can not find a strategy that works under traditional analysis or if uncertainties are too large that clear messages are absent, they may abandon the analytical rigor of their planning process altogether and base their decisions on good instinct and consensus of some future process that is easy to agree upon.
In this paper, we try to outline a system to derive strategic decisions under uncertainty for the climate change dilemma. What follows is a framework for determining the level of uncertainty surrounding strategic decisions and for tailoring strategy to that uncertainty.
Our core argument is that a robust strategy towards climate change involves the building of a technological portfolio of mitigation and adaptation measures that includes sufficient opposite technological positions to the underlying baseline emission scenarios given the uncertainties of the entire physical and socioeconomic system in place. In the case of mitigation, opposite technological positions with the highest leverage are particular types of sinks. A robust climate risk management portfolio can only work when the opposite technological positions are readily available when needed and therefore have to be prepared in advance. It is precisely the flexibility of these technological options which has to be quantified under the perspective of the uncertain nature of the underlying system and compared to the cost of creating these options, rather than comparing their cost with expected losses in a net present value type analysis. We conclude that climate policy - especially under the consideration of the precautionary principle - would look much different if uncertainties would be taken explicitly into account
A clinically feasible multiplex proteomic immunoassay as a novel functional diagnostic for pancreatic ductal adenocarcinoma
A Case of Urogenital Human Schistosomiasis from a Non-endemic Area
© 2015 Calvo-Cano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
On acceptance conditions for membrane systems: characterisations of L and NL
In this paper we investigate the affect of various acceptance conditions on
recogniser membrane systems without dissolution. We demonstrate that two
particular acceptance conditions (one easier to program, the other easier to
prove correctness) both characterise the same complexity class, NL. We also
find that by restricting the acceptance conditions we obtain a characterisation
of L. We obtain these results by investigating the connectivity properties of
dependency graphs that model membrane system computations
- …
