993 research outputs found
Constrained Quantization on Symplectic Manifolds and Quantum Distribution Functions
A quantization scheme based on the extension of phase space with application
of constrained quantization technic is considered. The obtained method is
similar to the geometric quantization. For constrained systems the problem of
scalar product on the reduced Hilbert space is investigated and possible
solution of this problem is done. Generalization of the Gupta-Bleuler like
conditions is done by the minimization of quadratic fluctuations of quantum
constraints. The scheme for the construction of generalized coherent states is
considered and relation with Berezin quantization is found. The quantum
distribution functions are introduced and their physical interpretation is
discussed.Comment: 42 page
Quantum derivation of the use of classical electromagnetic potentials in relativistic Coulomb excitation
We prove that a relativistic Coulomb excitation calculation in which the
classical electromagnetic field of the projectile is used to induce transitions
between target states gives the same target transition amplitudes, to all
orders of perturbation theory, as would a calculation in which the interaction
between projectile and target is mediated by a quantized electromagnetic field.Comment: 1 .zip file containing LaTex source plus three figures as .eps file
About Designing an Observer Pattern-Based Architecture for a Multi-objective Metaheuristic Optimization Framework
Multi-objective optimization with metaheuristics is an active and popular research field which is supported by the availability of
software frameworks providing algorithms, benchmark problems, quality indicators and other related components. Most of these tools follow a monolithic architecture that frequently leads to a lack of flexibility when a user intends to add new features to the included algorithms. In this paper, we explore a different approach by designing a component-based architecture for a multi-objective optimization framework based on the observer pattern. In this architecture, most of the algorithmic components
are observable entities that naturally allows to register a number of observers. This way, a metaheuristic is composed of a set of observable and observer elements, which can be easily extended without requiring to modify the algorithm. We have developed a prototype of this architecture and implemented the NSGA-II evolutionary algorithm on top of it as a case study. Our analysis confirms the improvement of flexibility using this architecture, pointing out the requirements it imposes and how performance is affected when adopting it.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
The Gauge Fields and Ghosts in Rindler Space
We consider 2d Maxwell system defined on the Rindler space with metric
ds^2=\exp(2a\xi)\cdot(d\eta^2-d\xi^2) with the goal to study the dynamics of
the ghosts. We find an extra contribution to the vacuum energy in comparison
with Minkowski space time with metric ds^2= dt^2-dx^2. This extra contribution
can be traced to the unphysical degrees of freedom (in Minkowski space). The
technical reason for this effect to occur is the property of Bogolubov's
coefficients which mix the positive and negative frequencies modes. The
corresponding mixture can not be avoided because the projections to positive
-frequency modes with respect to Minkowski time t and positive -frequency modes
with respect to the Rindler observer's proper time \eta are not equivalent. The
exact cancellation of unphysical degrees of freedom which is maintained in
Minkowski space can not hold in the Rindler space. In BRST approach this effect
manifests itself as the presence of BRST charge density in L and R parts. An
inertial observer in Minkowski vacuum |0> observes a universe with no net BRST
charge only as a result of cancellation between the two. However, the Rindler
observers who do not ever have access to the entire space time would see a net
BRST charge. In this respect the effect resembles the Unruh effect. The effect
is infrared (IR) in nature, and sensitive to the horizon and/or boundaries. We
interpret the extra energy as the formation of the "ghost condensate" when the
ghost degrees of freedom can not propagate, but nevertheless do contribute to
the vacuum energy. Exact computations in this simple 2d model support the claim
made in [1] that the ghost contribution might be responsible for the observed
dark energy in 4d FLRW universe.Comment: Final version to appear in Phys. Rev. D. Comments on relation with
energy momentum computations and few new refs are adde
Gauge equivalence in QCD: the Weyl and Coulomb gauges
The Weyl-gauge ( QCD Hamiltonian is unitarily transformed to a
representation in which it is expressed entirely in terms of gauge-invariant
quark and gluon fields. In a subspace of gauge-invariant states we have
constructed that implement the non-Abelian Gauss's law, this unitarily
transformed Weyl-gauge Hamiltonian can be further transformed and, under
appropriate circumstances, can be identified with the QCD Hamiltonian in the
Coulomb gauge. We demonstrate an isomorphism that materially facilitates the
application of this Hamiltonian to a variety of physical processes, including
the evaluation of -matrix elements. This isomorphism relates the
gauge-invariant representation of the Hamiltonian and the required set of
gauge-invariant states to a Hamiltonian of the same functional form but
dependent on ordinary unconstrained Weyl-gauge fields operating within a space
of ``standard'' perturbative states. The fact that the gauge-invariant
chromoelectric field is not hermitian has important implications for the
functional form of the Hamiltonian finally obtained. When this nonhermiticity
is taken into account, the ``extra'' vertices in Christ and Lee's Coulomb-gauge
Hamiltonian are natural outgrowths of the formalism. When this nonhermiticity
is neglected, the Hamiltonian used in the earlier work of Gribov and others
results.Comment: 25 page
Entanglement from longitudinal and scalar photons
The covariant quantization of the electromagnetic field in the Lorentz gauge
gives rise to longitudinal and scalar photons in addition to the usual
transverse photons. It is shown here that the exchange of longitudinal and
scalar photons can produce entanglement between two distant atoms or harmonic
oscillators. The form of the entangled states produced in this way is very
different from that obtained in the Coulomb gauge, where the longitudinal and
scalar photons do not exist. A generalized gauge transformation is used to show
that all physically observable effects are the same in the two gauges, despite
the differences in the form of the entangled states. An approach of this kind
may be useful for a covariant description of the dynamics of quantum
information processing.Comment: 12 pages, 1 figur
Finite temperature QCD
Engels J. Finite temperature QCD. In: Bleuler K, ed. Quarks and Nuclear Structure: Proceedings of the 3rd Klaus Erkelenz Symposium held at Bad Honnef, June 13–16,1983. Lecture Notes in Physics, 197. Berlin [u.a.]: Springer; 1984: 39-56.A review of finite temperature lattice calculations for quantum chromodynamics is given. We show how the thermodynamic quantities can be evaluated by Monte Carlo methods, once finite temperature field theory has been formulated on a lattice. The existing results for chemical potential zero and in quenched approximation are discussed. They exhibit a clear first order transition for SU(3) lattice QCD and probably a second order transition for SU(2) lattice QCD. The chiral and deconfinement transitions are coinciding in the quenched approximation
Using Comparative Preference Statements in Hypervolume-Based Interactive Multiobjective Optimization
International audienceThe objective functions in multiobjective optimization problems are often non-linear, noisy, or not available in a closed form and evolutionary multiobjective optimization (EMO) algorithms have been shown to be well applicable in this case. Here, our objective is to facilitate interactive decision making by saving function evaluations outside the "interesting" regions of the search space within a hypervolume-based EMO algorithm. We focus on a basic model where the Decision Maker (DM) is always asked to pick the most desirable solution among a set. In addition to the scenario where this solution is chosen directly, we present the alternative to specify preferences via a set of so-called comparative preference statements. Examples on standard test problems show the working principles, the competitiveness, and the drawbacks of the proposed algorithm in comparison with the recent iTDEA algorithm
Pseudo-unitary symmetry and the Gaussian pseudo-unitary ensemble of random matrices
Employing the currently discussed notion of pseudo-Hermiticity, we define a
pseudo-unitary group. Further, we develop a random matrix theory which is
invariant under such a group and call this ensemble of pseudo-Hermitian random
matrices as the pseudo-unitary ensemble. We obtain exact results for the
nearest-neighbour level spacing distribution for (2 X 2) PT-symmetric
Hamiltonian matrices which has a novel form, s log (1/s) near zero spacing.
This shows a level repulsion in marked distinction with an algebraic form in
the Wigner surmise. We believe that this paves way for a description of varied
phenomena in two-dimensional statistical mechanics, quantum chromodynamics, and
so on.Comment: 9 pages, 2 figures, LaTeX, submitted to the Physical Review Letters
on August 20, 200
Complex Ashtekar variables and reality conditions for Holst's action
From the Holst action in terms of complex valued Ashtekar variables
additional reality conditions mimicking the linear simplicity constraints of
spin foam gravity are found. In quantum theory with the results of You and
Rovelli we are able to implement these constraints weakly, that is in the sense
of Gupta and Bleuler. The resulting kinematical Hilbert space matches the
original one of loop quantum gravity, that is for real valued Ashtekar
connection. Our result perfectly fit with recent developments of Rovelli and
Speziale concerning Lorentz covariance within spin-form gravity.Comment: 24 pages, 2 picture
- …
