528 research outputs found
The design, analysis and experimental evaluation of an elastic model wing
An elastic orbiter model was developed to evaluate the effectiveness of aeroelasticity computer programs. The elasticity properties were introduced by constructing beam-like straight wings for the wind tunnel model. A standard influence coefficient mathematical model was used to estimate aeroelastic effects analytically. In general good agreement was obtained between the empirical and analytical estimates of the deformed shape. However, in the static aeroelasticity case, it was found that the physical wing exhibited less bending and more twist than was predicted by theory
Static and dynamic stability analysis of the space shuttle vehicle-orbiter
The longitudinal static and dynamic stability of a Space Shuttle Vehicle-Orbiter (SSV Orbiter) model is analyzed using the FLEXSTAB computer program. Nonlinear effects are accounted for by application of a correction technique in the FLEXSTAB system; the technique incorporates experimental force and pressure data into the linear aerodynamic theory. A flexible Orbiter model is treated in the static stability analysis for the flight conditions of Mach number 0.9 for rectilinear flight (1 g) and for a pull-up maneuver (2.5 g) at an altitude of 15.24 km. Static stability parameters and structural deformations of the Orbiter are calculated at trim conditions for the dynamic stability analysis, and the characteristics of damping in pitch are investigated for a Mach number range of 0.3 to 1.2. The calculated results for both the static and dynamic stabilities are compared with the available experimental data
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
User's guide to program FLEXSTAB
A manual is presented for correctly submitting program runs in aerodynamics on the UNIVAC 1108 computer system. All major program modules are included. Control cards are documented for the user's convenience, and card parameters are included in order to provide some idea as to reasonable time estimates for the program modules
Long-term air pollution exposure, genome-wide DNA methylation and lung function in the lifelines cohort study
BACKGROUND: Long-term air pollution exposure is negatively associated with lung function, yet the mechanisms underlying this association are not fully clear. Differential DNA methylation may explain this association. OBJECTIVES: Our main aim was to study the association between long-term air pollution exposure and DNA methylation. METHODS: We performed a genome-wide methylation study using robust linear regression models in 1,017 subjects from the LifeLines cohort study to analyze the association between exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5, fine particulate ma
Understanding Health Inequalities Through the Lens of Social Epigenetics
Longstanding racial/ethnic inequalities in morbidity and mortality persist in the United States. Although the determinants of health inequalities are complex, social and structural factors produced by inequitable and racialized systems are recognized as contributing sources. Social epigenetics is an emerging area of research that aims to uncover biological pathways through which social experiences affect health outcomes. A growing body of literature links adverse social exposures to epigenetic mechanisms, namely DNA methylation, offering a plausible pathway through which health inequalities may arise. This review provides an overview of social epigenetics and highlights existing literature linking social exposures-i.e., psychosocial stressors, racism, discrimination, socioeconomic position, and neighborhood social environment-to DNA methylation in humans. We conclude with a discussion of social epigenetics as a mechanistic link to health inequalities and provide suggestions for future social epigenetics research on health inequalities
The contribution of behaviour change techniques to teaching speech and language therapy students
Loss of Nrf2 abrogates the protective effect of Keap1 down regulation in a preclinical model of cutaneous squamous cell carcinoma
Cutaneous squamous cell carcinomas (cSCC) are the most common and highly mutated human malignancies, challenging identification of driver mutations and targeted therapies. Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates a cytoprotective inducible program, which counteracts the damaging effects of solar UV radiation, the main etiological factor in cSCC development. Downregulation of Kelch-like ECH-associated protein 1 (Keap1), a Cullin-3/Rbx1 ubiquitin ligase substrate adaptor protein, which mediates the ubiquitination and proteasomal degradation of Nrf2, has a strong protective effect in a preclinical model of cSCC. However, in addition to Nrf2, Keap1 affects ubiquitination of other proteins in the carcinogenesis process, including proteins involved in inflammation and DNA damage repair. Here, we generated Keap1(flox/flox) SKH-1 hairless mice in which Nrf2 is disrupted (Keap1(flox/flox)/Nrf2(−/−)) and subjected them chronically to solar-simulated UV radiation. We found that the incidence, multiplicity and burden of cSCC that form in Keap1(flox/flox)/Nrf2(−/−) mice are much greater than in their Keap1(flox/flox)/Nrf2(+/+) counterparts, establishing Nrf2 activation as the protection mediator. Our findings further imply that inhibition of Nrf2 globally, a strategy proposed for cancer treatment, is unlikely to be beneficial
New Basal Iguanodonts from the Cedar Mountain Formation of Utah and the Evolution of Thumb-Spiked Dinosaurs
BACKGROUND: Basal iguanodontian dinosaurs were extremely successful animals, found in great abundance and diversity almost worldwide during the Early Cretaceous. In contrast to Europe and Asia, the North American record of Early Cretaceous basal iguanodonts has until recently been limited largely to skulls and skeletons of Tenontosaurus tilletti. METHODOLOGY/PRINCIPAL FINDINGS: Herein we describe two new basal iguanodonts from the Yellow Cat Member of the Cedar Mountain Formation of eastern Utah, each known from a partial skull and skeleton. Iguanacolossus fortis gen. et sp. nov. and Hippodraco scutodens gen. et sp. nov. are each diagnosed by a single autapomorphy and a unique combination of characters. CONCLUSIONS/SIGNIFICANCE: Iguanacolossus and Hippodraco add greatly to our knowledge of North American basal iguanodonts and prompt a new comprehensive phylogenetic analysis of basal iguanodont relationships. This analysis indicates that North American Early Cretaceous basal iguanodonts are more basal than their contemporaries in Europe and Asia
- …
