442 research outputs found

    Absorption line series and autoionization resonance structure analysis in the ultraviolet spectrum of Sr I

    Get PDF
    Photoelectric spectrometer to measure absorption line series and autoionization resonance in ultraviolet spectrum of strontium vapo

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure

    Dissociation spectrum of H2+_2^+ from a short, intense infrared laser pulse: vibration structure and focal volume effects

    Full text link
    The dissociation spectrum of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schr\"odinger equation is discretized and integrated in position and momentum space. For few-cycle pulses one can resolve vibrational structure that commonly arises in the experimental preparation of the molecular ion from the neutral molecule. We calculate the corresponding energy spectrum and analyze the dependence on the pulse time-delay, pulse length, and intensity of the laser for λ790\lambda \sim 790nm. We conclude that the proton spectrum is a both a sensitive probe of the vibrational dynamics and the laser pulse. Finally we compare our results with recent measurements of the proton spectrum for 55 fs pulses using a Ti:Sapphire laser (λ790\lambda \sim 790 nm). Integrating over the laser focal volume, for the intensity I3×1015I \sim 3 \times 10^{15}W cm2^{-2}, we find our results are in excellent agreement with these experiments.Comment: 17 pages, 8 figures, preprin

    Tunneling Ionization Rates from Arbitrary Potential Wells

    Get PDF
    We present a practical numerical technique for calculating tunneling ionization rates from arbitrary 1-D potential wells in the presence of a linear external potential by determining the widths of the resonances in the spectral density, rho(E), adiabatically connected to the field-free bound states. While this technique applies to more general external potentials, we focus on the ionization of electrons from atoms and molecules by DC electric fields, as this has an important and immediate impact on the understanding of the multiphoton ionization of molecules in strong laser fields.Comment: 13 pages, 7 figures, LaTe

    Universality, limits and predictability of gold-medal performances at the Olympic Games

    Get PDF
    Inspired by the Games held in ancient Greece, modern Olympics represent the world's largest pageant of athletic skill and competitive spirit. Performances of athletes at the Olympic Games mirror, since 1896, human potentialities in sports, and thus provide an optimal source of information for studying the evolution of sport achievements and predicting the limits that athletes can reach. Unfortunately, the models introduced so far for the description of athlete performances at the Olympics are either sophisticated or unrealistic, and more importantly, do not provide a unified theory for sport performances. Here, we address this issue by showing that relative performance improvements of medal winners at the Olympics are normally distributed, implying that the evolution of performance values can be described in good approximation as an exponential approach to an a priori unknown limiting performance value. This law holds for all specialties in athletics-including running, jumping, and throwing-and swimming. We present a self-consistent method, based on normality hypothesis testing, able to predict limiting performance values in all specialties. We further quantify the most likely years in which athletes will breach challenging performance walls in running, jumping, throwing, and swimming events, as well as the probability that new world records will be established at the next edition of the Olympic Games.Comment: 8 pages, 3 figures, 1 table. Supporting information files and data are available at filrad.homelinux.or

    Measurements of 12C(→γ,pp) photon asymmetries for Eγ= 200–450 MeV

    Get PDF
    The 12C (→γ ,pp) reaction has been studied in the photon energy range 200-450 MeV at the Mainz microtron MAMI-C, where linearly polarised photons were energy-tagged using the Glasgow-Mainz Tagged Photon Spectrometer and protons were detected in the Crystal Ball detector. The photon asymmetry Σ has been measured over a wider Eγ range than previous measurements. The strongest asymmetries were found at low missing energies where direct emission of nucleon pairs is expected. Cuts on the difference in azimuthal angles of the two ejected protons increased the magnitude of the observed asymmetries. At low missing energies the Σ data exhibit a strong angular dependence, similar to deuteron photodisintegration

    Semiclassical ionization dynamics of the hydrogen molecular ion in an electric field of arbitrary orientation

    Full text link
    Quasi-static models of barrier suppression have played a major role in our understanding of the ionization of atoms and molecules in strong laser fields. Despite their success, in the case of diatomic molecules these studies have so far been restricted to fields aligned with the molecular axis. In this paper we investigate the locations and heights of the potential barriers in the hydrogen molecular ion in an electric field of arbitrary orientation. We find that the barriers undergo bifurcations as the external field strength and direction are varied. This phenomenon represents an unexpected level of intricacy even on this most elementary level of the dynamics. We describe the dynamics of tunnelling ionization through the barriers semiclassically and use our results to shed new light on the success of a recent theory of molecular tunnelling ionization as well as earlier theories that restrict the electric field to be aligned with the molecular axis

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Determination of the Dalitz plot parameter alpha for the decay eta->3pi^0 with the Crystal Ball at MAMI-B

    Full text link
    A precise measurement of the Dalitz plot parameter, alpha, for the eta->3pi^0 decay is presented. The experiment was performed with the Crystal Ball and TAPS large acceptance photon detectors at the tagged photon beam facility of the MAMI-B electron accelerator in Mainz. High statistics of 1.8*10^6 eta->3pi^0 events were obtained, giving the result alpha = -0.032 +/- 0.002(stat) +/- 0.002(syst).Comment: 9 pages, 6 figures, published in the online-first section of EPJ A, included changes referees asked for, added DO
    corecore