1,549 research outputs found
Keterkaitan Karakteristik Kawasan Transit Berdasarkan Prinsip Transit Oriented Development (TOD) terhadap Tingkat Penggunaan Kereta Komuter Koridor Surabaya-Sidoarjo
Koridor Surabaya-Sidoarjo telah dilayani dengan kereta komuter dalam mendukung tulang punggung transportasi perkotaan Surabaya. Namun penggunaan moda ini belum optimal. Hal ini dilihat dari besarnya pergerakan penduduk yang masih didominasi oleh penggunaan kendaraan pribadi menyebabkan kemacetan. Untuk mengatasi permasalahan tersebut diperlukan strategi inovatif yang mengedepankan integrasi antara penggunaan lahan dengan transportasi, salah satunya melalui konsep Transit Oriented Development (TOD) di kawasan stasiun kereta di sepanjang koridor Surabaya-Sidoarjo. Sebagai upaya pengimplementasiannya, perlu dilakukan studi mengenai keterkaitan karakteristik kawasan transit berbasis TOD terhadap jumlah penggunaan kereta komuter koridor Surabaya-Sidoarjo. Melalui analisis korelasi diperoleh hasil penelitian bahwa kepadatan penggunaan lahan (KLB), index keberagaman guna lahan (mixed use entrophy index) perdagangan dan jasa dan fasilitas umum, rata-rata lebar jalur pejalan kaki, dan luas jalur pejalan kaki signifikan memiliki hubungan korelasi yang kuat dengan tingkat penggunaan kereta komuter. Hal ini menunjukkan bahwa adanya potensi pengembangan kawasan transit berbasis TOD pada koridor Surabaya-Sidoarjo dalam mendorong penggunaan kereta komuter
Influence of yarn parameters on cotton/kenaf blended yarn characteristics
Spinning kenaf fibers into yarns is challenging due to the stiffness and lack of cohesiveness of the fibers. Alkali treatment is known to remove hemicellulose, wax, and breaks down lignin, reducing stiffness of kenaf fiber and improving its spinnability. Kenaf fibers were treated at percentages of 4% and 6% and blended with cotton fibers at blend ratios of 40:60 and 50:50 prior to a ring spinning process to produce a double ply yarn of 70 tex. Yarn were twisted at three sets of twist. The responses were measured in terms of carding waste percentages and yarn strength. The results showed that the optimized yarn structural parameter is kenaf fiber treated at 6% and with a kenaf/cotton 40/60 blending ratio based on its tenacity and minimum carding waste. ANOVA shows that there is a good interaction effect between NaOH and kenaf/cotton ratio, and NaOH concentration and twist
The Effectiveness of New Solar Photovoltaic System with Supercapacitor for Rural Areas
Countries like Malaysia have more that 70% of its population living in rural areas. Majority of these rural areas lie in regions where most villages do not have grid connected electricity. Renewable energy using photovoltaic (PV) panels offers an alternative and cost efficient solution that exploits the yearlong abundance of sunlight available in countries like Malaysia. The main problem with PV systems is the high maintenance costs in replacing batteries every few years which makes PV systems unattractive for rural areas. A full scale PV system, developed in Semenyih Malaysia, aims to increase battery lifetime and reduce maintenance costs by incorporating supercapacitors. The system was developed in a life-sized cabin to mimic a rural home. A programmable load is used to test the system with the load profile of a typical rural household USAge. Experimental and simulation results show that the supercapacitor bank is able to reduce the stress on the battery by absorbing peak current surges. Results also show that the system is able to maintain a high battery state of charge during the entire day.Article History: Received June 17th 2016; Received in revised form August 16th 2016; Accepted Sept 10th 2016; Available onlineHow to Cite This Article: Fahmi, M.I., Rajkumar, R., Wong, Y.W., Chong, L.W., Arelhi, R., and Isa, D. (2016) The Effectiveness of New Solar Photovoltaic System with Supercapacitor for Rural Areas. Int. Journal of Renewable Energy Development, 5(3), 249-257.http://dx.doi.org/10.14710/ijred.5.3.249-25
Phase diagram of localization in a magnetic field
The phase diagram of localization is numerically calculated for a
three-dimensional disordered system in the presence of a magnetic field using
the Peierls substitution. The mobility edge trajectory shifts in the
energy-disorder space when increasing the field. In the band center, localized
states near the phase boundary become delocalized. The obtained field
dependence of the critical disorder is in agreement with a power law behavior
expected from scaling theory. Close to the tail of the band the magnetic field
causes localization of extended states.Comment: 4 pages, RevTeX, 3 PS-figures (4 extra references are included, minor
additions), to appear in Phys. Rev. B as a Brief Repor
Three operational taxonomic units of Eimeria are common in Nigerian chickens and may undermine effective diagnosis of coccidiosis
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Recommended from our members
Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults.
OBJECTIVE:
The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults.
DESIGN:
To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults.
RESULTS:
Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group.
CONCLUSIONS:
These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans
A multiscale approach to the adsorption of core-shell nanoparticles at fluid interfaces
Self-assembly of colloidal particles at liquid–liquid interfaces is a process with great potential for the creation of controlled structures, due to the trapping of the particles in the plane of the interface combined with their lateral mobility. Here we present a multiscale characterisation of the adsorption and interfacial behaviour of core–shell iron oxide–poly(ethylene glycol) nanoparticles at a water–n-decane interface using three complementary, in situ, methods, which span many different length scales. First, dynamic interfacial measurements are taken to follow the adsorption of particles from the bulk aqueous phase to the interface. The mechanical properties of the interface are then probed using micron-sized tracers in probe-particle tracking and nano-tracers in fluorescence correlation spectroscopy. The results show that the rate of particle adsorption to the interface scales with the square of bulk concentration, as predicted by a recent model. In addition, we show that despite full monolayers of nanoparticles forming, the interface remains unexpectedly fluid, with only a slowing of tracer particle mobility but no evidence of interface jamming as seen for hard nanoparticles. Our results illustrate that nanoparticles stabilised by soft, extended polymeric shells, display distinct features at fluid interfaces that can be harnessed for the fabrication of functional materials.ISSN:1744-683XISSN:1744-684
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Active atoms and interstitials in two-dimensional colloidal crystals
We study experimentally and numerically the motion of a self-phoretic active particle in two-dimensional loosely packed colloidal crystals at fluid interfaces. Two scenarios emerge depending on the interactions between the active particle and the lattice: the active particle either navigates throughout the crystal as an interstitial or is part of the lattice and behaves as an active atom. Active interstitials undergo a run-and-tumble-like motion, with the passive colloids of the crystal acting as tumbling sites. Instead, active atoms exhibit an intermittent motion, stemming from the interplay between the periodic potential landscape of the passive crystal and the particle's self-propulsion. Our results constitute the first step towards the realization of non-close-packed crystalline phases with internal activity
- …
