6,522 research outputs found
Coincidence of magnetic and valence quantum critical points in CeRhIn5 under pressure
We present accurate electrical resistivity measurements along the two
principle crystallographic axes of the pressure-induced heavy-fermion
superconductor CeRhIn5 up to 5.63 GPa. For both directions, a valence crossover
line is identified in the p-T plane and the extrapolation of this line to zero
temperature coincides with the collapse of the magnetic ordering temperature.
Furthermore, it is found that the p-T phase diagram of CeRhIn5 in the valence
crossover region is very similar to that of CeCu2Si2. These results point to
the essential role of Ce-4f electron delocalization in both destroying magnetic
order and realizing superconductivity in CeRhIn5 under pressure.Comment: 6 pages, 6 figures, to appear in PR
A theory of new type of heavy-electron superconductivity in PrOs_4Sb_12: quadrupolar-fluctuation mediated odd-parity pairings
It is shown that unconventional nature of superconducting state of
PrOs_4Sb_12, a Pr-based heavy electron compound with the filled-Skutterudite
structure, can be explained in a unified way by taking into account the
structure of the crystalline-electric-field (CEF) level, the shape of the Fermi
surface determined by the band structure calculation, and a picture of the
quasiparticles in f-configuration with magnetically singlet CEF ground
state. Possible types of pairing are narrowed down by consulting recent
experimental results. In particular, the chiral "p"-wave states such as
p_x+ip_y is favoured under the magnetic field due to the orbital Zeeman effect,
while the "p"-wave states with two-fold symmetery such as p_x can be stabilized
by a feedback effect without the magnetic field. It is also discussed that the
double superconducting transition without the magnetic field is possible due to
the spin-orbit coupling of the "triplet" Cooper pairs in the chiral state.Comment: 12 pages, 2 figures, submitted to J. Phys.: Condens. Matter Lette
Heavy Fermion superconductor CeCuSi under high pressure: multiprobing the valence crossover
The first heavy fermion superconductor CeCuSi has not revealed all
its striking mysteries yet. At high pressures, superconductivity is supposed to
be mediated by valence fluctuations, in contrast to ambient pressure, where
spin fluctuations most likely act as pairing glue. We have carried out a
multiprobe (electric transport, thermopower, ac specific heat, Hall and Nernst
effects) experiment up to on a high quality CeCuSi
single crystal. Reliable resistivity data reveal for the first time a scaling
behavior close to the supposed valence transition, and allow to locate the
critical end point at and a slightly negative
temperature. In the same pressure region, remarkable features have also been
detected in the other physical properties, acting as further signatures of the
Ce valence crossover and the associated critical fluctuations.Comment: 13 pages, 14 figure
1 um Excess Sources in the UKIDSS - I. Three T Dwarfs in the SDSS Southern Equatorial Stripe
We report the discovery of two field brown dwarfs, ULAS J0128-0041 and ULAS
J0321+0051, and the rediscovery of ULAS J0226+0051 (IfA 0230-Z1), in the Sloan
Digital Sky Survey (SDSS) southern equatorial stripe. They are found in the
course of our follow-up observation program of 1 um excess sources in the
United Kingdom Infrared Telescope Infrared Deep Sky Survey. The Gemini
Multi-Object Spectrographs spectra at red optical wavelengths (6500-10500 A)
are presented, which reveal that they are early-T dwarfs. The classification is
also supported by their optical to near-infrared colors. It is noted that ULAS
J0321+0051 is one of the faintest currently known T dwarfs. The estimated
distances to the three objects are 50-110 pc, thus they are among the most
distant field T dwarfs known. Dense temporal coverage of the target fields
achieved by the SDSS-II Supernova Survey allows us to perform a simple
time-series analysis, which leads to the finding of significant proper motions
of 150-290 mas/yr or the transverse velocities of 40-100 km/s for ULAS
J0128-0041 and ULAS J0226+0051. We also find that there are no detectable,
long-term (a-few-year) brightness variations above a few times 0.1 mag for the
two brown dwarfs.Comment: Accepted for publication in the Astronomical Journal; Typos correcte
Huge Enhancement of Impurity Scattering due to Critical Valence Fluctuations in a Ce-Based Heavy Electron System
On the basis of the Ward-Pitaevskii identity, the residual resistivity
is shown to exhibit huge enhancement around the quantum critical
point of valence transition in Ce-based heavy electron systems. This explains a
sharp peak of observed in CeCuGe under the pressure at
16GPa where the superconducting trasition temperature also exhibit the
sharp peak.Comment: 5 pages, 1 figur
Quantum computational renormalization in the Haldane phase
Single-spin measurements on the ground state of an interacting spin lattice
can be used to perform a quantum computation. We show how such measurements can
mimic renormalization group transformations and remove the short-ranged
variations of the state that can reduce the fidelity of a computation. This
suggests that the quantum computational ability of a spin lattice could be a
robust property of a quantum phase. We illustrate our idea with the ground
state of a spin-1 chain, which can serve as a quantum computational wire not
only at the Affleck-Kennedy-Lieb-Tasaki point, but within the
rotationally-invariant Haldane phase.Comment: v2: 4 pages, 3 figures; improved description of buffering scheme and
connection to string operators. v3: final published versio
Coupled SDW and Superconducting Order in FFLO State of CeCoIn
The mechanism of incommensurate (IC) spin-density-wave (SDW) order observed
in the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) phase of CeCoIn is discussed
on the basis of new mode-coupling scheme among IC-SDW order, two
superconducting orders of FFLO with B () symmetry
and -pairing of odd-parity. Unlike the mode-coupling schemes proposed by
Kenzelmann et al, Sciencexpress, 21 August (2008), that proposed in the present
Letter can offer a simple explanation for why the IC-SDW order is observed only
in FFLO phase and the IC wave vector is rather robust against the magnetic
field.Comment: 3pages, 1 figure, accepted for publication in J. Phys. Soc. Jpn.,
Vol.77 (2008), No.1
Content addressable memory project
The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described
Origin of Drastic Change of Fermi Surface and Transport Anomalies in CeRhIn5 under Pressure
The mechanism of drastic change of Fermi surfaces as well as transport
anomalies near P=Pc=2.35 GPa in CeRhIn5 is explained theoretically. The key
mechanism is pointed out to be the interplay of magnetic order and Ce-valence
fluctuations. We show that the antiferromagnetic state with "small" Fermi
surfaces changes to the paramagnetic state with "large" Fermi surfaces with
huge enhancement of effective mass of electrons with keeping finite c-f
hybridization. This explains the drastic change of the de Haas-van Alphen
signals. Furthermore, it is also consistent with the emergence of T-linear
resistivity simultaneous with the residual resistivity peak at P=Pc in CeRhIn5.Comment: 5 pages, 3 figures, submitted to Journal of Physical Society of Japa
Signatures of valence fluctuations in CeCu2Si2 under high pressure
Simultaneous resistivity and a.c.-specific heat measurements have been
performed under pressure on single crystalline CeCu2Si2 to over 6 GPa in a
hydrostatic helium pressure medium. A series of anomalies were observed around
the pressure coinciding with a maximum in the superconducting critical
temperature, . These anomalies can be linked with an abrupt change
of the Ce valence, and suggest a second quantum critical point at a pressure
GPa, where critical valence fluctuations provide the
superconducting pairing mechanism, as opposed to spin fluctuations at ambient
pressure. Such a valence instability, and associated superconductivity, is
predicted by an extended Anderson lattice model with Coulomb repulsion between
the conduction and f-electrons. We explain the T-linear resistivity found at
in this picture, while other anomalies found around can be
qualitatively understood using the same model.Comment: Submitted to Phys. Rev.
- …
