379 research outputs found
Binary Bose-Einstein Condensate Mixtures in Weakly and Strongly Segregated Phases
We perform a mean-field study of the binary Bose-Einstein condensate mixtures
as a function of the mutual repulsive interaction strength. In the phase
segregated regime, we find that there are two distinct phases: the weakly
segregated phase characterized by a `penetration depth' and the strongly
segregated phase characterized by a healing length. In the weakly segregated
phase the symmetry of the shape of each condensate will not take that of the
trap because of the finite surface tension, but its total density profile still
does. In the strongly segregated phase even the total density profile takes a
different symmetry from that of the trap because of the mutual exclusion of the
condensates. The lower critical condensate-atom number to observe the complete
phase segregation is discussed. A comparison to recent experimental data
suggests that the weakly segregated phase has been observed.Comment: minor change
Evolution of the progenitor binary of V1309 Scorpii before merger
It was recently demonstrated that the eruption of V1309 Sco was a result of a
merger of the components of a cool contact binary. We computed a set of
evolutionary models of the detached binaries with different initial parameters
to compare it with pre-burst observations of V1309 Sco. The models are based on
our recently developed evolutionary model of the formation of cool contact
binaries. The best agreement with observations was obtained for binaries with
initial masses of 1.8-2.0 solar masses and initial periods of 2.5-3.1 d. The
evolution of these binaries consists of three phases: at first the binary is
detached and both components lose mass and angular momentum through a
magnetized wind. This takes almost two thirds of the total evolutionary
lifetime. The remaining third is spent in a semi-detached configuration of the
Algol-type, following the Roche-lobe overflow by the initially more massive
component. When the other component leaves the main sequence and moves toward
the giant branch, a contact configuration is formed for a short time, followed
by the coalescence of both components.Comment: 5 pages, 1 figure, Astronomy and Astrophysics, in prin
Scattering of first and second sound waves by quantum vorticity in superfluid Helium
We study the scattering of first and second sound waves by quantum vorticity
in superfluid Helium using two-fluid hydrodynamics. The vorticity of the
superfluid component and the sound interact because of the nonlinear character
of these equations. Explicit expressions for the scattered pressure and
temperature are worked out in a first Born approximation, and care is exercised
in delimiting the range of validity of the assumptions needed for this
approximation to hold. An incident second sound wave will partly convert into
first sound, and an incident first sound wave will partly convert into second
sound. General considerations show that most incident first sound converts into
second sound, but not the other way around. These considerations are validated
using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic
Binary coalescence from case A evolution -- mergers and blue stragglers
We constructed some main-sequence mergers from case A binary evolution and
studied their characteristics via Eggleton's stellar evolution code. Both total
mass and orbital angular momentum are conservative in our binary evolutions.
Some mergers might be on the left of the ZAMS as defined by normal surface
composition on a CMD because of enhanced surface helium content. The study also
shows that central hydrogen content of the mergers is independent of mass. As a
consequence, we fit the formula of magnitude and B-V of the mergers when they
return back to thermal equilibrium with maximum error 0.29 and 0.037,
respectively. Employing the consequences above, we performed Monte Carlo
simulations to examine our models in NGC 2682 and NGC 2660. In NGC 2682, binary
mergers from our models cover the region with high luminosity, but its
importance is much less than that of AML. Our results are well-matched to the
observations of NGC2660 if there is about 0.5Mo of mass loss in the merger
process.Comment: 14 pages, 12 figures. accepted by MNRA
Tracing the young massive high-eccentricity binary system Theta 1 Orionis C through periastron passage
The nearby high-mass star binary system Theta 1 Orionis C is the brightest
and most massive of the Trapezium OB stars at the core of the Orion Nebula
Cluster, and it represents a perfect laboratory to determine the fundamental
parameters of young hot stars and to constrain the distance of the Orion
Trapezium Cluster. Between January 2007 and March 2008, we observed T1OriC with
VLTI/AMBER near-infrared (H- and K-band) long-baseline interferometry, as well
as with bispectrum speckle interferometry with the ESO 3.6m and the BTA 6m
telescopes (B'- and V'-band). Combining AMBER data taken with three different
3-telescope array configurations, we reconstructed the first VLTI/AMBER
closure-phase aperture synthesis image, showing the T1OriC system with a
resolution of approx. 2 mas. To extract the astrometric data from our
spectrally dispersed AMBER data, we employed a new algorithm, which fits the
wavelength-differential visibility and closure phase modulations along the H-
and K-band and is insensitive to calibration errors induced, for instance, by
changing atmospheric conditions. Our new astrometric measurements show that the
companion has nearly completed one orbital revolution since its discovery in
1997. The derived orbital elements imply a short-period (P=11.3 yrs) and
high-eccentricity orbit (e=0.6) with periastron passage around 2002.6. The new
orbit is consistent with recently published radial velocity measurements, from
which we can also derive the first direct constraints on the mass ratio of the
binary components. We employ various methods to derive the system mass
(M_system=44+/-7 M_sun) and the dynamical distance (d=410+/-20 pc), which is in
remarkably good agreement with recently published trigonometric parallax
measurements obtained with radio interferometry.Comment: 15 pages, 15 figures, accepted by A&
Visual/infrared interferometry of Orion Trapezium stars: Preliminary dynamical orbit and aperture synthesis imaging of the Theta 1 Orionis C system
Located in the Orion Trapezium cluster, Theta 1 Orionis C is one of the
youngest and nearest high-mass stars (O5-O7) and also known to be a close
binary system. Using new multi-epoch visual and near-infrared bispectrum
speckle interferometric observations obtained at the BTA 6 m telescope, and
IOTA near-infrared long-baseline interferometry, we trace the orbital motion of
the Theta 1 Ori C components over the interval 1997.8 to 2005.9, covering a
significant arc of the orbit. Besides fitting the relative position and the
flux ratio, we apply aperture synthesis techniques to our IOTA data to
reconstruct a model-independent image of the Theta 1 Ori C binary system.
The orbital solutions suggest a high eccentricity (e approx. 0.91) and
short-period (P approx. 10.9 yrs) orbit. As the current astrometric data only
allows rather weak constraints on the total dynamical mass, we present the two
best-fit orbits. From these orbital solutions one can be favoured, implying a
system mass of 48 M_sun and a distance to the Trapezium cluster of 434 pc. When
also taking the measured flux ratio and the derived location in the HR-diagram
into account, we find good agreement for all observables, assuming a spectral
type of O5.5 for Theta 1 Ori C1 (M=34.0 M_sun) and O9.5 for C2 (M=15.5 M_sun).
We find indications that the companion C2 is massive itself, which makes it
likely that its contribution to the intense UV radiation field of the Trapezium
cluster is non-negligible. Furthermore, the high eccentricity of the
preliminary orbit solution predicts a very small physical separation during
periastron passage (approx. 1.5 AU, next passage around 2007.5), suggesting
strong wind-wind interaction between the two O stars.Comment: 13 pages, 9 figures, Accepted for publication in Astronomy &
Astrophysic
Magnus and Iordanskii Forces in Superfluids
The total transverse force acting on a quantized vortex in a superfluid is a
problem that has eluded a complete understanding for more than three decades.
In this letter I propose a remarkably simple argument, somewhat reminiscent of
Laughlin's beautiful argument for the quantization of conductance in the
quantum Hall effect, to define the superfluid velocity part of the transverse
force. This term is found to be . Although
this result does not seem to be overly controversial, this thermodynamic
argument based only on macroscopic properties of the superfluid does offer a
robust derivation. A recent publication by Thouless, Ao and Niu has
demonstrated that the vortex velocity part of the transverse force in a
homogeneous neutral superfluid is given by the usual form . A combination of these two independent results and the required
Galilean invariance yields that there cannot be any transverse force
proportional to the normal fluid velocity, in apparent conflict with
Iordanskii's theory of the transverse force due to phonon scattering by the
vortex.Comment: RevTex, 1 Encapsulated Postscript figur
Vortex vs spinning string: Iordanskii force and gravitational Aharonov-Bohm effect
We discuss the transverse force acting on the spinning cosmic string, moving
in the background matter. It comes from the gravitational Aharonov-Bohm effect
and corresponds to the Iordanskii force acting on the vortex in superfluids,
when the vortex moves with respect to the normal component of the liquid.Comment: Latex file, 9 pages, no figures, references are added, version
submitted to JETP Let
Absolute dimensions of eclipsing binaries. XXVIII. BK Pegasi and other F-type binaries: Prospects for calibration of convective core overshoot
We present a detailed study of the F-type detached eclipsing binary BK Peg,
based on new photometric and spectroscopic observations. The two components,
which have evolved to the upper half of the main-sequence band, are quite
different with masses and radii of (1.414 +/- 0.007 Msun, 1.988 +/- 0.008 Rsun)
and (1.257 +/- 0.005 Msun, 1.474 +/- 0.017 Rsun), respectively. The 5.49 day
period orbit of BK Peg is slightly eccentric (e = 0.053). The measured
rotational velocities are 16.6 +/- 0.2 (primary) and 13.4 +/- 0.2 (secondary)
km/s. For the secondary component this corresponds to (pseudo)synchronous
rotation, whereas the primary component seems to rotate at a slightly lower
rate. We derive an iron abundance of [Fe/H] =-0.12 +/- 0.07 and similar
abundances for Si, Ca, Sc, Ti, Cr and Ni. Yonsei-Yale and Victoria-Regina
evolutionary models for the observed metal abundance reproduce BK Peg at ages
of 2.75 and 2.50 Gyr, respectively, but tend to predict a lower age for the
more massive primary component than for the secondary. We find the same age
trend for three other upper main-sequence systems in a sample of well studied
eclipsing binaries with components in the 1.15-1.70 Msun range, where
convective core overshoot is gradually ramped up in the models. We also find
that the Yonsei-Yale models systematically predict higher ages than the
Victoria-Regina models. The sample includes BW Aqr, and as a supplement we have
determined a [Fe/H] abundance of -0.07 +/- 0.11 for this late F-type binary. We
propose to use BK Peg, BW Aqr, and other well-studied 1.15-1.70 Msun eclipsing
binaries to fine-tune convective core overshoot, diffusion, and possibly other
ingredients of modern theoretical evolutionary models.Comment: Accepted for publication in Astronomy and Astrophysic
Hydrodynamic Approach to Vortex Lifetime in Trapped Bose Condensates
We study a vortex in a two-dimensional, harmonically trapped Bose-Einstein
condensate at zero temperature. Through a variational calculation using a trial
condensate wave function and a nonlinear Schroedinger Lagrangian, we obtain the
effective potential experienced by a vortex at an arbitrary position in the
condensate, and find that an off-center vortex will move in a circular
trajectory around the trap center. We find the frequency of this precession to
be smaller than the elementary excitation frequencies in the cloud.
We also study the radiation of sound from a moving vortex in an infinite,
uniform system, and discuss the validity of this as an approximation for the
trapped case. Furthermore, we estimate the lifetime of a vortex due to
imperfections in the trapping potential.Comment: 10 pages, 1 eps figure, submitted to PRA, adjustments in response to
referee, one refernce adde
- …
