58,667 research outputs found
Bidirectional optimization of the melting spinning process
This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities
Wireless Information and Power Transfer in Full-Duplex Systems with Massive Antenna Arrays
We consider a multiuser wireless system with a full-duplex hybrid access
point (HAP) that transmits to a set of users in the downlink channel, while
receiving data from a set of energy-constrained sensors in the uplink channel.
We assume that the HAP is equipped with a massive antenna array, while all
users and sensor nodes have a single antenna. We adopt a time-switching
protocol where in the first phase, sensors are powered through wireless energy
transfer from HAP and HAP estimates the downlink channel of the users. In the
second phase, sensors use the harvested energy to transmit to the HAP. The
downlink-uplink sum-rate region is obtained by solving downlink sum-rate
maximization problem under a constraint on uplink sum-rate. Moreover, assuming
perfect and imperfect channel state information, we derive expressions for the
achievable uplink and downlink rates in the large-antenna limit and approximate
results that hold for any finite number of antennas. Based on these analytical
results, we obtain the power-scaling law and analyze the effect of the number
of antennas on the cancellation of intra-user interference and the
self-interference.Comment: Accepted for the IEEE International Conference on Communications (ICC
2017
What kinds of coordinate can keep the Hawking temperature invariant for the static spherically symmetric black hole?
By studying the Hawking radiation of the most general static spherically
symmetric black hole arising from scalar and Dirac particles tunnelling, we
find the Hawking temperature is invariant in the general coordinate
representation (\ref{arbitrary1}), which satisfies two conditions: a) its
radial coordinate transformation is regular at the event horizon; and b) there
is a time-like Killing vector.Comment: 10 page
- …
