734 research outputs found
Polarization Dependence of Raman Spectra in Strained Graphene
The polarization dependences of the G, D, and 2D (G) bands in Raman
spectra at graphene bulk and edge are examined theoretically. The 2D and D
bands have different selection rules at bulk and edge. At bulk, the 2D band
intensity is maximum when the polarization of the scattered light is parallel
to that of incident light, whereas the D band intensity does not have a
polarization dependence. At edge, the 2D and D bands exhibit a selection rule
similar to that of the G band proposed in a previous paper. We suggest that a
constraint equation on the axial velocity caused by the graphene edge is
essential for the dependence of the G band on the crystallographic orientation
observed in the bulk of strained graphene. This is indicative of that the
pseudospin and valleyspin in the bulk of graphene can not be completely free
from the effect of surrounding edge. The status of the experiments on the G and
D bands at the graphene edge is mentioned.Comment: 11 pages, 3 figure
Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level
The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow
Arrival time distributions of electrons in air showers with primary energies above 10 (18)eV observed at 900m above sea level
Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances
Berry's Phase for Standing Wave Near Graphene Edge
Standing waves near the zigzag and armchair edges, and their Berry's phases
are investigated. It is suggested that the Berry's phase for the standing wave
near the zigzag edge is trivial, while that near the armchair edge is
non-trivial. A non-trivial Berry's phase implies the presence of a singularity
in parameter space. We have confirmed that the Dirac singularity is absent
(present) in the parameter space for the standing wave near the zigzag
(armchair) edge. The absence of the Dirac singularity has a direct consequence
in the local density of states near the zigzag edge. The transport properties
of graphene nanoribbons observed by recent numerical simulations and
experiments are discussed from the point of view of the Berry's phases for the
standing waves.Comment: 6 pages, 4 figure
Spin-stripe density varies linearly with hole content in single-layer Bi2201 cuprate
We have performed inelastic neutron scattering measurements on the
single-layer cuprate Bi2+xSr2-xCuO6+y (Bi2201) with x=0.2, 0.3, 0.4 and 0.5, a
doping range that spans the spin-glass (SG) to superconducting (SC) phase
boundary. The doping evolution of low energy spin fluctuations was found to be
characterized by a change of incommensurate modulation wave vector from the
tetragonal [110] to [100]/[010] directions, while maintaining a linear relation
between the incommensurability and the hole concentration, delta p. In the SC
regime, the spectral weight is strongly suppressed below 4 meV. Similarities
and differences in the spin correlations between Bi2201 and the prototypical
single-layer system La2-xSrxCuO4 are discussed.Comment: 5 page,4 figure
Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures
Electron paramagnetic resonance (EPR) study of air-physisorbed defective
carbon nano-onions evidences in favor of microwave assisted formation of
weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and
edge carbon atoms carrying pi-electronic spins. These complexes being located
on the graphene edges are stable at low temperatures but irreversibly
dissociate at temperatures above 50-60 K. These EPR findings are justified by
density functional theory (DFT) calculations demonstrating transfer of an
electron from the zigzag edge of graphene-like material to oxygen molecule
physisorbed on the graphene sheet edge. This charge transfer causes changing
the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT
calculations show significant changes of adsorption energy of oxygen molecule
and robustness of the charge transfer to variations of the graphene-like
substrate morphology (flat and corrugated mono- and bi-layered graphene) as
well as edges passivation. The presence of H- and COOH- terminated edge carbon
sites with such corrugated substrate morphology allows formation of ZE-O2-
paramagnetic complexes characterized by small (<50 meV) binding energies and
also explains their irreversible dissociation as revealed by EPR.Comment: 28 pages, 8 figures, 2 tables, accepted in Carbon journa
Neutron-scattering study of spin correlations in La1.94-xSrxCe0.06CuO4
We performed a neutron-scattering experiment to investigate the effect of
distortion of CuO2 planes on the low-energy spin correlation of
La1.94-xSrxCe0.06CuO4 (LSCCO). Due to the carrier-compensation effect by
co-doping of Sr and Ce, LSCCO has a smaller orthorhombic lattice distortion
compared to La2-xSrxCuO4 (LSCO) with comparable hole concentration p. A clear
gap with the edge-energy of 6~7 meV was observed in the energy spectrum of
local dynamical susceptibility c"(w) for both x=0.18 (p~0.14) and x=0.24
(p~0.20) samples as observed for optimally-doped LSCO (x=0.15~0.18). For the
x=0.14 (p~0.10) sample, in addition to the gap-like structure in c"(w) we
observed a low-energy component within the gap which develops below 2~3meV with
decreasing the energy. The low-energy component possibly coincides with the
static magnetic correlation observed in this sample. These results are
discussed from a view point of relationship between the stability of low-energy
spin fluctuations and the distortion of CuO2 planes.Comment: 4 pages, 3 figures, proceeding for SNS2007 conferenc
Hidden itinerant-spin phase in heavily-overdoped La2-xSrxCuO4 revealed by dilute Fe doping: A combined neutron scattering and angle-resolved photoemission study
We demonstrated experimentally a direct way to probe a hidden propensity to
the formation of spin density wave (SDW) in a non-magnetic metal with strong
Fermi surface nesting. Substituting Fe for a tiny amount of Cu (1%) induced an
incommensurate magnetic order below 20 K in heavily-overdoped La2-xSrxCuO4
(LSCO). Elastic neutron scattering suggested that this order cannot be ascribed
to the localized spins on Cu or doped Fe. Angle-resolved photoemission
spectroscopy (ARPES), combined with numerical calculations, revealed a strong
Fermi surface nesting inherent in the pristine LSCO that likely drives this
order. The heavily-overdoped Fe-doped LSCO thus represents the first plausible
example of the long-sought "itinerant-spin extreme" of cuprates, where the
spins of itinerant doped holes define the magnetic ordering ground state. This
finding complements the current picture of cuprate spin physics that highlights
the predominant role of localized spins at lower dopings. The demonstrated set
of methods could potentially apply to studying hidden density-wave
instabilities of other "nested" materials on the verge of density wave
ordering.Comment: Abstract and discussion revised; to appear in Phys. Rev. Let
Soliton Trap in Strained Graphene Nanoribbons
The wavefunction of a massless fermion consists of two chiralities,
left-handed and right-handed, which are eigenstates of the chiral operator. The
theory of weak interactions of elementally particle physics is not symmetric
about the two chiralities, and such a symmetry breaking theory is referred to
as a chiral gauge theory. The chiral gauge theory can be applied to the
massless Dirac particles of graphene. In this paper we show within the
framework of the chiral gauge theory for graphene that a topological soliton
exists near the boundary of a graphene nanoribbon in the presence of a strain.
This soliton is a zero-energy state connecting two chiralities and is an
elementally excitation transporting a pseudospin. The soliton should be
observable by means of a scanning tunneling microscopy experiment.Comment: 7 pages, 4 figure
- …
