6,693 research outputs found
Xenon Bubble Chambers for Direct Dark Matter Detection
The search for dark matter is one of today's most exciting fields. As bigger
detectors are being built to increase their sensitivity, background reduction
is an ever more challenging issue. To this end, a new type of dark matter
detector is proposed, a xenon bubble chamber, which would combine the strengths
of liquid xenon TPCs, namely event by event energy resolution, with those of a
bubble chamber, namely insensitivity to electronic recoils. In addition, it
would be the first time ever that a dark matter detector is active on all three
detection channels, ionization and scintillation characteristic of xenon
detectors, and heat through bubble formation in superheated fluids. Preliminary
simulations show that, depending on threshold, a discrimination of 99.99\% to
99.9999+\% can be achieved, which is on par or better than many current
experiments. A prototype is being built at the University at Albany, SUNY. The
prototype is currently undergoing seals, thermal, and compression testing.Comment: 11 pages, 6 pages, LIDINE 2015 proceedin
A transmission electron microscope study of N\'eel skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction
Skyrmions in ultrathin ferromagnetic metal (FM)/heavy metal (HM) multilayer
systems produced by conventional sputtering methods have recently generated
huge interest due to their applications in the field of spintronics. The
sandwich structure with two correctly-chosen heavy metal layers provides an
additive interfacial exchange interaction which promotes domain wall or
skyrmion spin textures that are N\'eel in character and with a fixed chirality.
Lorentz transmission electron microscopy (TEM) is a high resolution method
ideally suited to quantitatively image such chiral magnetic configurations.
When allied with physical and chemical TEM analysis of both planar and
cross-sectional samples, key length scales such as grain size and the chiral
variation of the magnetisation variation have been identified and measured. We
present data showing the importance of the grain size (mostly < 10nm) measured
from direct imaging and its potential role in describing observed behaviour of
isolated skyrmions (diameter < 100nm). In the latter the region in which the
magnetization rotates is measured to be around 30 nm. Such quantitative
information on the multiscale magnetisation variations in the system is key to
understanding and exploiting the behaviour of skyrmions for future device
applications.Comment: 11 pages , 6 figures, journal articl
Recommended from our members
Neurons containing retrogradely transported Fluoro-Gold exhibit a variety of lysosomal profiles: a combined brightfield, fluorescence, and electron microscopic study.
The advantages of axonally transported Fluoro-Gold as a retrograde fluorescent marker are numerous. The objective of the present study was to determine whether transported Fluoro-Gold is visible in either semi-thin sections for light microscopy or thin sections for electron microscopy. Rats received injections of Fluoro-Gold into either the striatum or thoracic spinal cord. After appropriate survival times, labelled neurons were observed with the fluorescence microscope in brain regions that are known to project to the injected areas. Sections that contained labelled cells were embedded in plastic and examined with a fluorescence microscope. Semi-thin sections of unosmicated tissue displayed high-resolution fluorescent labelling of somata and dendrites. In contrast, osmicated tissue did not fluoresce, but numerous dark granules were observed in the dendritic and perikaryal cytoplasm of labelled neurons in toluidine blue stained sections that were examined with brightfield optics. The unosmicated tissue did not display these granules, and this finding suggested that the granules are composed of membranes. Neurons in other brain regions that are known not to project to the injection sites did not contain these dark granules. Adjacent thin sections examined with the electron microscope displayed numerous electron-dense, lysosome-like organelles in the cytoplasm of labelled neurons. The electron density of these organelles was greater than that of lysosomes in unlabelled neurons. Three types of distinctive organelles were observed in these preparations: (1) relatively dense concentric lamellar bodies of various sizes; (2) heterogeneous or lipofuscin-like lysosomes; and (3) coarse grained lysosomes. Control sections and unlabelled neurons did not display these organelles. Therefore, these organelles appear to correlate with Fluoro-Gold localized within the somata and dendrites of retrogradely labelled neurons. It is not known if they are the Fluoro-Gold itself, or represent a physiological effect on membranes. The results of this study indicate that Fluoro-Gold may be useful for tract tracing at the electron microscopic level
Collective T=0 pairing in N=Z nuclei? Pairing vibrations around 56Ni revisited
We present a new analysis of the pairing vibrations around 56Ni, with
emphasis on odd-odd nuclei. This analysis of the experimental excitation
energies is based on the subtraction of average properties that include the
full symmetry energy together with volume, surface and Coulomb terms. The
results clearly indicate a collective behavior of the isovector pairing
vibrations and do not support any appreciable collectivity in the isoscalar
channel.Comment: RevTeX, two-column, 5 pages, 4 figure
Offsetting of CO₂ emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining
The hydrated Mg-carbonate mineral, hydromagnesite [Mg₅(CO₃)₄(OH)₂•4H₂O], precipitates within mine tailings at the Mount Keith Nickel Mine, Western Australia as a direct result of mining operations. We have used quantitative mineralogical data and δ¹³C, δ¹⁸O and F¹⁴C isotopic data to quantify the amount of CO₂fixation and identify carbon sources. Our radiocarbon results indicate that at least 80% of carbon stored in hydromagnesite has been captured from the modern atmosphere. Stable isotopic results indicate that dissolution of atmospheric CO₂ into mine tailings water is kinetically limited, which suggests that the current rate of carbon mineralization could be accelerated. Reactive transport modeling is used to describe the observed variation in tailings mineralogy and to estimate rates of CO₂ fixation. Based on our assessment, approximately 39,800 t/yr of atmospheric CO₂ are being trapped and stored in tailings at Mount Keith. This represents an offsetting of approximately 11% of the mine's annual greenhouse gas emissions. Thus, passive sequestration via enhanced weathering of mineral waste can capture and store a significant amount of CO₂. Recommendations are made for changes to tailings management and ore processing practices that have potential to accelerate carbonation of tailings and further reduce or completely offset the net greenhouse gas emissions at Mount Keith and many other mines
Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration
An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the
existence of an excited superdeformed (SD) band in 190Hg and its very unusual
decay into the lowest SD band over 3-4 transitions. The energies and dipole
character of the transitions linking the two SD bands have been firmly
established. Comparisons with RPA calculations indicate that the excited SD
band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at
http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm
Active Galactic Nuclei under the scrutiny of CTA
Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer
excellent conditions for efficient particle acceleration in internal and
external shocks, turbulence, and magnetic reconnection events. The jets as well
as particle accelerating regions close to the supermassive black holes
(hereafter SMBH) at the intersection of plasma inflows and outflows, can
produce readily detectable very high energy gamma-ray emission. As of now, more
than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the
present ground-based gamma-ray telescopes, which represents more than one third
of the cosmic sources detected so far in the VHE gamma-ray regime. The future
Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the
VHE range by about one order of magnitude, shedding new light on AGN population
studies, and AGN classification and unification schemes. CTA will be a unique
tool to scrutinize the extreme high-energy tail of accelerated particles in
SMBH environments, to revisit the central engines and their associated
relativistic jets, and to study the particle acceleration and emission
mechanisms, particularly exploring the missing link between accretion physics,
SMBH magnetospheres and jet formation. Monitoring of distant AGN will be an
extremely rewarding observing program which will inform us about the inner
workings and evolution of AGN. Furthermore these AGN are bright beacons of
gamma-rays which will allow us to constrain the extragalactic infrared and
optical backgrounds as well as the intergalactic magnetic field, and will
enable tests of quantum gravity and other "exotic" phenomena.Comment: 28 pages, 23 figure
A transmission electron microscope study of Néel skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction
Skyrmions in ultrathin ferromagnetic metal (FM)/heavy metal (HM) multilayer systems produced by conventional sputtering methods have recently generated huge interest due to their applications in the field of spintronics. The sandwich structure with two correctly-chosen heavy metal layers provides an additive interfacial exchange interaction which promotes domain wall or skyrmion spin textures that are Néel in character and with a fixed chirality. Lorentz transmission electron microscopy (TEM) is a high resolution method ideally suited to quantitatively image such chiral magnetic configurations. When allied with physical and chemical TEM analysis of both planar and cross-sectional samples, key length scales such as grain size and the chiral variation of the magnetisation variation have been identified and measured. We present data showing the importance of the grain size (mostly < 10 nm) measured from direct imaging and its potential role in describing observed behaviour of isolated skyrmions (diameter < 100 nm). In the latter the region in which the magnetization rotates is measured to be around 30 nm. Such quantitative information on the multiscale magnetisation variations in the system is key to understanding and exploiting the behaviour of skyrmions for future applications in information storage and logic devices
Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks
We have imaged N\'eel skyrmion bubbles in perpendicularly magnetised polycrystalline multilayers patterned into 1 \mu m diameter dots, using scanning transmission x-ray microscopy. The skyrmion bubbles can be nucleated by the application of an external magnetic field and are stable at zero field with a diameter of 260 nm. Applying an out of plane field that opposes the magnetisation of the skyrmion bubble core moment applies pressure to the bubble and gradually compresses it to a diameter of approximately 100 nm. On removing the field the skyrmion bubble returns to its original diameter via a hysteretic pathway where most of the expansion occurs in a single abrupt step. This contradicts analytical models of homogeneous materials in which the skyrmion compression and expansion are reversible. Micromagnetic simulations incorporating disorder can explain this behaviour using an effective thickness modulation between 10 nm grains
Orbifold projection in supersymmetric QCD at N_f\leq N_c
Supersymmetric orbifold projection of N=1 SQCD with relatively small number
of flavors (not larger than the number of colors) is considered. The purpose is
to check whether orbifolding commutes with the infrared limit. On the one hand,
one considers the orbifold projection of SQCD and obtains the low-energy
description of the resulting theory. On the other hand, one starts with the
low-energy effective theory of the original SQCD, and only then perfoms
orbifolding. It is shown that at finite N_c the two low-energy theories
obtained in these ways are different. However, in the case of stabilized
run-away vacuum these two theories are shown to coincide in the large N_c
limit. In the case of quantum modified moduli space, topological solitons
carrying baryonic charges are present in the orbifolded low-energy theory.
These solitons may restore the correspondence between the two theories provided
that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde
- …
