6,693 research outputs found

    Xenon Bubble Chambers for Direct Dark Matter Detection

    Full text link
    The search for dark matter is one of today's most exciting fields. As bigger detectors are being built to increase their sensitivity, background reduction is an ever more challenging issue. To this end, a new type of dark matter detector is proposed, a xenon bubble chamber, which would combine the strengths of liquid xenon TPCs, namely event by event energy resolution, with those of a bubble chamber, namely insensitivity to electronic recoils. In addition, it would be the first time ever that a dark matter detector is active on all three detection channels, ionization and scintillation characteristic of xenon detectors, and heat through bubble formation in superheated fluids. Preliminary simulations show that, depending on threshold, a discrimination of 99.99\% to 99.9999+\% can be achieved, which is on par or better than many current experiments. A prototype is being built at the University at Albany, SUNY. The prototype is currently undergoing seals, thermal, and compression testing.Comment: 11 pages, 6 pages, LIDINE 2015 proceedin

    A transmission electron microscope study of N\'eel skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction

    Full text link
    Skyrmions in ultrathin ferromagnetic metal (FM)/heavy metal (HM) multilayer systems produced by conventional sputtering methods have recently generated huge interest due to their applications in the field of spintronics. The sandwich structure with two correctly-chosen heavy metal layers provides an additive interfacial exchange interaction which promotes domain wall or skyrmion spin textures that are N\'eel in character and with a fixed chirality. Lorentz transmission electron microscopy (TEM) is a high resolution method ideally suited to quantitatively image such chiral magnetic configurations. When allied with physical and chemical TEM analysis of both planar and cross-sectional samples, key length scales such as grain size and the chiral variation of the magnetisation variation have been identified and measured. We present data showing the importance of the grain size (mostly < 10nm) measured from direct imaging and its potential role in describing observed behaviour of isolated skyrmions (diameter < 100nm). In the latter the region in which the magnetization rotates is measured to be around 30 nm. Such quantitative information on the multiscale magnetisation variations in the system is key to understanding and exploiting the behaviour of skyrmions for future device applications.Comment: 11 pages , 6 figures, journal articl

    Collective T=0 pairing in N=Z nuclei? Pairing vibrations around 56Ni revisited

    Get PDF
    We present a new analysis of the pairing vibrations around 56Ni, with emphasis on odd-odd nuclei. This analysis of the experimental excitation energies is based on the subtraction of average properties that include the full symmetry energy together with volume, surface and Coulomb terms. The results clearly indicate a collective behavior of the isovector pairing vibrations and do not support any appreciable collectivity in the isoscalar channel.Comment: RevTeX, two-column, 5 pages, 4 figure

    Offsetting of CO₂ emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining

    Get PDF
    The hydrated Mg-carbonate mineral, hydromagnesite [Mg₅(CO₃)₄(OH)₂•4H₂O], precipitates within mine tailings at the Mount Keith Nickel Mine, Western Australia as a direct result of mining operations. We have used quantitative mineralogical data and δ¹³C, δ¹⁸O and F¹⁴C isotopic data to quantify the amount of CO₂fixation and identify carbon sources. Our radiocarbon results indicate that at least 80% of carbon stored in hydromagnesite has been captured from the modern atmosphere. Stable isotopic results indicate that dissolution of atmospheric CO₂ into mine tailings water is kinetically limited, which suggests that the current rate of carbon mineralization could be accelerated. Reactive transport modeling is used to describe the observed variation in tailings mineralogy and to estimate rates of CO₂ fixation. Based on our assessment, approximately 39,800 t/yr of atmospheric CO₂ are being trapped and stored in tailings at Mount Keith. This represents an offsetting of approximately 11% of the mine's annual greenhouse gas emissions. Thus, passive sequestration via enhanced weathering of mineral waste can capture and store a significant amount of CO₂. Recommendations are made for changes to tailings management and ore processing practices that have potential to accelerate carbonation of tailings and further reduce or completely offset the net greenhouse gas emissions at Mount Keith and many other mines

    Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration

    Get PDF
    An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the existence of an excited superdeformed (SD) band in 190Hg and its very unusual decay into the lowest SD band over 3-4 transitions. The energies and dipole character of the transitions linking the two SD bands have been firmly established. Comparisons with RPA calculations indicate that the excited SD band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm

    Active Galactic Nuclei under the scrutiny of CTA

    Full text link
    Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer excellent conditions for efficient particle acceleration in internal and external shocks, turbulence, and magnetic reconnection events. The jets as well as particle accelerating regions close to the supermassive black holes (hereafter SMBH) at the intersection of plasma inflows and outflows, can produce readily detectable very high energy gamma-ray emission. As of now, more than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the present ground-based gamma-ray telescopes, which represents more than one third of the cosmic sources detected so far in the VHE gamma-ray regime. The future Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the VHE range by about one order of magnitude, shedding new light on AGN population studies, and AGN classification and unification schemes. CTA will be a unique tool to scrutinize the extreme high-energy tail of accelerated particles in SMBH environments, to revisit the central engines and their associated relativistic jets, and to study the particle acceleration and emission mechanisms, particularly exploring the missing link between accretion physics, SMBH magnetospheres and jet formation. Monitoring of distant AGN will be an extremely rewarding observing program which will inform us about the inner workings and evolution of AGN. Furthermore these AGN are bright beacons of gamma-rays which will allow us to constrain the extragalactic infrared and optical backgrounds as well as the intergalactic magnetic field, and will enable tests of quantum gravity and other "exotic" phenomena.Comment: 28 pages, 23 figure

    A transmission electron microscope study of Néel skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction

    Get PDF
    Skyrmions in ultrathin ferromagnetic metal (FM)/heavy metal (HM) multilayer systems produced by conventional sputtering methods have recently generated huge interest due to their applications in the field of spintronics. The sandwich structure with two correctly-chosen heavy metal layers provides an additive interfacial exchange interaction which promotes domain wall or skyrmion spin textures that are Néel in character and with a fixed chirality. Lorentz transmission electron microscopy (TEM) is a high resolution method ideally suited to quantitatively image such chiral magnetic configurations. When allied with physical and chemical TEM analysis of both planar and cross-sectional samples, key length scales such as grain size and the chiral variation of the magnetisation variation have been identified and measured. We present data showing the importance of the grain size (mostly < 10 nm) measured from direct imaging and its potential role in describing observed behaviour of isolated skyrmions (diameter < 100 nm). In the latter the region in which the magnetization rotates is measured to be around 30 nm. Such quantitative information on the multiscale magnetisation variations in the system is key to understanding and exploiting the behaviour of skyrmions for future applications in information storage and logic devices

    Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks

    Get PDF
    We have imaged N\'eel skyrmion bubbles in perpendicularly magnetised polycrystalline multilayers patterned into 1 \mu m diameter dots, using scanning transmission x-ray microscopy. The skyrmion bubbles can be nucleated by the application of an external magnetic field and are stable at zero field with a diameter of 260 nm. Applying an out of plane field that opposes the magnetisation of the skyrmion bubble core moment applies pressure to the bubble and gradually compresses it to a diameter of approximately 100 nm. On removing the field the skyrmion bubble returns to its original diameter via a hysteretic pathway where most of the expansion occurs in a single abrupt step. This contradicts analytical models of homogeneous materials in which the skyrmion compression and expansion are reversible. Micromagnetic simulations incorporating disorder can explain this behaviour using an effective thickness modulation between 10 nm grains

    Orbifold projection in supersymmetric QCD at N_f\leq N_c

    Get PDF
    Supersymmetric orbifold projection of N=1 SQCD with relatively small number of flavors (not larger than the number of colors) is considered. The purpose is to check whether orbifolding commutes with the infrared limit. On the one hand, one considers the orbifold projection of SQCD and obtains the low-energy description of the resulting theory. On the other hand, one starts with the low-energy effective theory of the original SQCD, and only then perfoms orbifolding. It is shown that at finite N_c the two low-energy theories obtained in these ways are different. However, in the case of stabilized run-away vacuum these two theories are shown to coincide in the large N_c limit. In the case of quantum modified moduli space, topological solitons carrying baryonic charges are present in the orbifolded low-energy theory. These solitons may restore the correspondence between the two theories provided that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde
    corecore