67,627 research outputs found
Lattice QCD calculation of scattering length
We study s-wave pion-pion () scattering length in lattice QCD for
pion masses ranging from 330 MeV to 466 MeV. In the "Asqtad" improved staggered
fermion formulation, we calculate the four-point functions for isospin
I=0 and 2 channels, and use chiral perturbation theory at next-to-leading order
to extrapolate our simulation results. Extrapolating to the physical pion mass
gives the scattering lengths as and for isospin I=2 and 0 channels, respectively. Our lattice
simulation for scattering length in the I=0 channel is an exploratory
study, where we include the disconnected contribution, and our preliminary
result is near to its experimental value. These simulations are performed with
MILC 2+1 flavor gauge configurations at lattice spacing fm.Comment: Remove some typo
Thermal-stress analysis for a wood composite blade
A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report
Recommended from our members
Dielectric properties of epoxy nanocomposites containing TiO2, Al2O3 and ZnO fillers
The paper presents results of dielectric spectroscopy and space charge (PEA) measurements on epoxy resin filled with 10% w/w micro- and nano- sized particles of TiO2, Al3O2 and ZnO. The results appear to show that the material from which the nano-particle is made is not highly significant in influencing these results. The results support the proposition that the dielectric properties of such nano-filled composites are controlled by Stern-Gouy-Chapman layers (“interaction zones”) around the particles
Anomalous conductivity, Hall factor, magnetoresistance, and thermopower of accumulation layer in
We study the low temperature conductivity of the electron accumulation layer
induced by the very strong electric field at the surface of
sample. Due to the strongly nonlinear lattice dielectric response, the
three-dimensional density of electrons in such a layer decays with the
distance from the surface very slowly as . We show
that when the mobility is limited by the surface scattering the contribution of
such a tail to the conductivity diverges at large because of growing time
electrons need to reach the surface. We explore truncation of this divergence
by the finite sample width, by the bulk scattering rate, or by the crossover to
the bulk linear dielectric response with the dielectric constant . As a
result we arrive at the anomalously large mobility, which depends not only on
the rate of the surface scattering, but also on the physics of truncation.
Similar anomalous behavior is found for the Hall factor, the magnetoresistance,
and the thermopower
Recommended from our members
Dynamic Behavior of Precast Concrete Beam-Column Sub-Assemblages with High Performance Connections Subjected to Sudden Column Removal Scenario
Unbonded posttensioned precast concrete (UPPC) structure has shown its excellent aseismic performance in laboratory tests and earthquake investigation. However, the progressive collapse behavior of UPPC subjected to column removal scenario is still unclear. To fill this knowledge gap, two 1/2 scaled UPPC beam-column sub-assemblages were tested under a penultimate column removal scenario. The dynamic test results indicated that UPPC sub-assemblages have desirable load redistribution capacity to mitigate progressive collapse. The failure modes of the sub-assemblages observed in dynamic test were quite similar to that in static counterparts
Collapse of electrons to a donor cluster in SrTiO
It is known that a nucleus with charge where creates
electron-positron pairs from the vacuum. These electrons collapse onto the
nucleus resulting in a net charge while the positrons are emitted. This
effect is due to the relativistic dispersion law. The same reason leads to the
collapse of electrons to the charged impurity with a large charge number in
narrow-band gap semiconductors and Weyl semimetals as well as graphene. In this
paper, a similar effect of electron collapse and charge renormalization is
found for donor clusters in SrTiO (STO), but with a very different origin.
At low temperatures, STO has an enormously large dielectric constant. Because
of this, the nonlinear dielectric response becomes dominant when the electric
field is not too small. We show that this leads to the collapse of surrounding
electrons into a charged spherical donor cluster with radius when its total
charge number exceeds a critical value where is the
lattice constant. Using the Thomas-Fermi approach, we find that the net charge
grows with until exceeds another value .
After this point, remains . We extend our results to the case
of long cylindrical clusters. Our predictions can be tested by creating discs
and stripes of charge on the STO surface
- …
