8,319 research outputs found

    Interpreting the time variable RM observed in the core region of the TeV blazar Mrk 421

    Full text link
    In this work we interpret and discuss the time variable rotation measure (RM) found, for the first time over a 1-yr period, in the core region of a blazar. These results are based on a one-year, multi-frequency (15, 24, and 43 GHz) Very Long Baseline Array (VLBA) monitoring of the TeV blazar Markarian 421 (Mrk 421). We investigate the Faraday screen properties and its location with respect to the jet emitting region. Given that the 43 GHz radio core flux density and the RM time evolution suggest a similar trend, we explore the possible connection between the RM and the accretion rate. Among the various scenarios that we explore, the jet sheath is the most promising candidate for being the main source of Faraday rotation. During the one-year observing period the RM trend shows two sign reversals, which may be qualitatively interpreted within the context of the magnetic tower models. We invoke the presence of two nested helical magnetic fields in the relativistic jet with opposite helicities, whose relative contribution produce the observed RM values. The inner helical field has the poloidal component (BpB_{\rm p}) oriented in the observer's direction and produces a positive RM, while the outer helical field, with BpB_{\rm p} in the opposite direction, produces a negative RM. We assume that the external helical field dominates the contribution to the observed RM, while the internal helical field dominates when a jet perturbation arises during the second observing epoch. Being the intrinsic polarization angle parallel to the jet axis, a pitch angle of the helical magnetic field ϕ70\phi\gtrsim 70^\circ is required. Additional scenarios are also considered to explain the observed RM sign reversals.Comment: 6 pages, 2 figures. Published on MNRA

    Cardiac biomarkers in cats

    Get PDF

    Multiple Object Tracking in Urban Traffic Scenes with a Multiclass Object Detector

    Full text link
    Multiple object tracking (MOT) in urban traffic aims to produce the trajectories of the different road users that move across the field of view with different directions and speeds and that can have varying appearances and sizes. Occlusions and interactions among the different objects are expected and common due to the nature of urban road traffic. In this work, a tracking framework employing classification label information from a deep learning detection approach is used for associating the different objects, in addition to object position and appearances. We want to investigate the performance of a modern multiclass object detector for the MOT task in traffic scenes. Results show that the object labels improve tracking performance, but that the output of object detectors are not always reliable.Comment: 13th International Symposium on Visual Computing (ISVC

    General formalism of Hamiltonians for realizing a prescribed evolution of a qubit

    Full text link
    We investigate the inverse problem concerning the evolution of a qubit system, specifically we consider how one can establish the Hamiltonians that account for the evolution of a qubit along a prescribed path in the projected Hilbert space. For a given path, there are infinite Hamiltonians which can realize the same evolution. A general form of the Hamiltonians is constructed in which one may select the desired one for implementing a prescribed evolution. This scheme can be generalized to higher dimensional systems.Comment: 6 page

    ¿Cuánto tiempo dedican los estudiantes al estudio de asignaturas básicas de 1º de ingeniería?

    Get PDF
    De cara a adaptar las actuales asignaturas a los créditos ECTS, resulta necesario estimar cuánto tiempo necesita invertir un alumno para el aprendizaje de una asignatura. En la Escuela Universitaria Politécnica de la UPV-EHU se ha realizado un primer estudio indagatorio sobre este tema en varias asignaturas. Se ha recurrido a un diseáo de cuestionario semanal a todos los estudiantes de la clase y, en caso necesario, entrevista individual, con la colaboración de los estudiantes. Los resultados indican que el ritmo de estudio y la cantidad de horas están fuertemente condicionados por el sistema de evaluación de la asignatura

    OptEEmAL: Decision-Support Tool for the Design of Energy Retrofitting Projects at District Level

    Get PDF
    Designing energy retrofitting actions poses an elevated number of problems, as the definition of the baseline, selection of indicators to measure performance, modelling, setting objectives, etc. This is time-consuming and it can result in a number of inaccuracies, leading to inadequate decisions. While these problems are present at building level, they are multiplied at district level, where there are complex interactions to analyse, simulate and improve. OptEEmAL proposes a solution as a decision-support tool for the design of energy retrofitting projects at district level. Based on specific input data (IFC(s), CityGML, etc.), the platform will automatically simulate the baseline scenario and launch an optimisation process where a series of Energy Conservation Measures (ECMs) will be applied to this scenario. Its performance will be evaluated through a holistic set of indicators to obtain the best combination of ECMs that complies with user's objectives. A great reduction in time and higher accuracy in the models are experienced, since they are automatically created and checked. A subjective problem is transformed into a mathematical problem; it simplifies it and ensures a more robust decision-making. This paper will present a case where the platform has been tested.This research work has been partially funded by the European Commission though the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 680676. All related information to the project is available at https://www.opteemal-project.eu
    corecore