1,051 research outputs found
Restrictive immigration policy in Germany: pains and gains foregone?
Many European countries restrict immigration from new EU member countries. The rationale is to avoid adverse wage and employment effects. We quantify these effects for Germany. Following Borjas (2003), we estimate a structural model of labor demand, based on elasticities of substitution between workers with different experience levels and education. We allow for unemployment which we model in a price-wage-setting framework. Simulating a counterfactual scenario without restrictions for migration from new EU members countries, we find moderate negative wage effects, combined with increased unemployment for some types of workers. Wage-setting mitigates wage cuts
16 x 25 Ge:Ga Detector Arrays for FIFI LS
We are developing two-dimensional 16 x 25 pixel detector arrays of both
unstressed and stressed Ge:Ga photoconductive detectors for far-infrared
astronomy from SOFIA. The arrays, based on earlier 5 x 5 detector arrays used
on the KAO, will be for our new instrument, the Far Infrared Field Imaging Line
Spectrometer (FIFI LS). The unstressed Ge:Ga detector array will cover the
wavelength range from 40 to 120 microns, and the stressed Ge:Ga detector array
from 120 to 210 microns. The detector arrays will be operated with multiplexed
integrating amplifiers with cryogenic readout electronics located close to the
detector arrays. The design of the stressed detector array and results of
current measurements on several prototype 16 pixel linear arrays are reported.
They demonstrate the feasibility of the current concept. ***This paper does not
include Figures due to astro-ph size limitations. Please download entire file
at http://fifi-ls.mpe-garching.mpg.de/spie.det.ps.gz ***Comment: 8 pages, SPIE Proceedings, Astronomical Telescopes and
Instrumentation 200
The effects of star formation on the low-metallicity ISM: NGC4214 mapped with Herschel/PACS spectroscopy
We present Herschel/PACS spectroscopic maps of the dwarf galaxy NC4214
observed in 6 far infrared fine-structure lines: [C II] 158mu, [O III] 88mu, [O
I] 63mu, [O I] 146mu, [N II] 122mu, and [N II] 205mu. The maps are sampled to
the full telescope spatial resolution and reveal unprecedented detail on ~ 150
pc size scales. We detect [C II] emission over the whole mapped area, [O III]
being the most luminous FIR line. The ratio of [O III]/[C II] peaks at about 2
toward the sites of massive star formation, higher than ratios seen in dusty
starburst galaxies. The [C II]/CO ratios are 20 000 to 70 000 toward the 2
massive clusters, which are at least an order of magnitude larger than spiral
or dusty starbursts, and cannot be reconciled with single-slab PDR models.
Toward the 2 massive star-forming regions, we find that L[CII] is 0.5 to 0.8%
of the LTIR . All of the lines together contribute up to 2% of LTIR . These
extreme findings are a consequence of the lower metallicity and young,
massive-star formation commonly found in dwarf galaxies. These conditions
promote large-scale photodissociation into the molecular reservoir, which is
evident in the FIR line ratios. This illustrates the necessity to move to
multiphase models applicable to star-forming clusters or galaxies as a whole.Comment: Accepted for publication in the A&A Herschel Special Issu
China’s emerging global role: dissatisfied responsible great power
China has (re)emerged as a great power in a world not of its own making. The distribution of power in major organisations and the dominant norms of international interactions are deemed to unfairly favour the existing Western powers, and at times obstruct China’s ability to meet national development goals. Nevertheless, engaging the global economy has been a key source of economic growth (thus helping to maintain regime stability), and establishing China’s credentials as a responsible global actor is seen as a means of ensuring continued access to what China needs. As an emerging great power that is also still in many respects a developing country, China’s challenge is to change the global order in ways that do not cause global instability or generate crises that would damage China’s own ability to generate economic growth and ensure political stability
Measurement of the proton electric to magnetic form factor ratio from \vec ^1H(\vec e, e'p)
We report the first precision measurement of the proton electric to magnetic
form factor ratio from spin-dependent elastic scattering of longitudinally
polarized electrons from a polarized hydrogen internal gas target. The
measurement was performed at the MIT-Bates South Hall Ring over a range of
four-momentum transfer squared from 0.15 to 0.65 (GeV/c).
Significantly improved results on the proton electric and magnetic form factors
are obtained in combination with previous cross-section data on elastic
electron-proton scattering in the same region.Comment: 4 pages, 2 figures, submitted to PR
Neural Network Parameterizations of Electromagnetic Nucleon Form Factors
The electromagnetic nucleon form-factors data are studied with artificial
feed forward neural networks. As a result the unbiased model-independent
form-factor parametrizations are evaluated together with uncertainties. The
Bayesian approach for the neural networks is adapted for chi2 error-like
function and applied to the data analysis. The sequence of the feed forward
neural networks with one hidden layer of units is considered. The given neural
network represents a particular form-factor parametrization. The so-called
evidence (the measure of how much the data favor given statistical model) is
computed with the Bayesian framework and it is used to determine the best form
factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the
prior assumptions is added. The manuscript contains 4 new figures and 2 new
tables (32 pages, 15 figures, 2 tables
The Charge Form Factor of the Neutron at Low Momentum Transfer from the Reaction
We report new measurements of the neutron charge form factor at low momentum
transfer using quasielastic electrodisintegration of the deuteron.
Longitudinally polarized electrons at an energy of 850 MeV were scattered from
an isotopically pure, highly polarized deuterium gas target. The scattered
electrons and coincident neutrons were measured by the Bates Large Acceptance
Spectrometer Toroid (BLAST) detector. The neutron form factor ratio
was extracted from the beam-target vector asymmetry
at four-momentum transfers , 0.20, 0.29 and 0.42
(GeV/c).Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let
Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability
In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior
The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory
The Photodetector Array Camera and Spectrometer (PACS) is one of the three
science instruments on ESA's far infrared and submillimetre observatory. It
employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25
pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64
pixels, respectively, to perform integral-field spectroscopy and imaging
photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it
simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m,
over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in
each band. In spectroscopy mode, it images a field of 47"x47", resolved into
5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral
resolution of ~175km/s. We summarise the design of the instrument, describe
observing modes, calibration, and data analysis methods, and present our
current assessment of the in-orbit performance of the instrument based on the
Performance Verification tests. PACS is fully operational, and the achieved
performance is close to or better than the pre-launch predictions
- …
