1,058 research outputs found
Real time plasma equilibrium reconstruction in a Tokamak
The problem of equilibrium of a plasma in a Tokamak is a free boundary
problemdescribed by the Grad-Shafranov equation in axisymmetric configurations.
The right hand side of this equation is a non linear source, which represents
the toroidal component of the plasma current density. This paper deals with the
real time identification of this non linear source from experimental
measurements. The proposed method is based on a fixed point algorithm, a finite
element resolution, a reduced basis method and a least-square optimization
formulation
Numerical Investigation of a Mesoscopic Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process
In this paper a spatial homogeneous vehicular traffic flow model based on a
stochastic master equation of Boltzmann type in the acceleration variable is
solved numerically for a special driver interaction model. The solution is done
by a modified direct simulation Monte Carlo method (DSMC) well known in non
equilibrium gas kinetic. The velocity and acceleration distribution functions
in stochastic equilibrium, mean velocity, traffic density, ACN, velocity
scattering and correlations between some of these variables and their car
density dependences are discussed.Comment: 23 pages, 10 figure
Hydrodynamic modes, Green-Kubo relations, and velocity correlations in dilute granular gases
It is shown that the hydrodynamic modes of a dilute granular gas of inelastic
hard spheres can be identified, and calculated in the long wavelength limit.
Assuming they dominate at long times, formal expressions for the Navier-Stokes
transport coefficients are derived. They can be expressed in a form that
generalizes the Green-Kubo relations for molecular systems, and it is shown
that they can also be evaluated by means of -particle simulation methods.
The form of the hydrodynamic modes to zeroth order in the gradients is used to
detect the presence of inherent velocity correlations in the homogeneous
cooling state, even in the low density limit. They manifest themselves in the
fluctuations of the total energy of the system. The theoretical predictions are
shown to be in agreement with molecular dynamics simulations. Relevant related
questions deserving further attention are pointed out
Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc
published_or_final_versio
Phase space reduction of the one-dimensional Fokker-Planck (Kramers) equation
A pointlike particle of finite mass m, moving in a one-dimensional viscous
environment and biased by a spatially dependent force, is considered. We
present a rigorous mapping of the Fokker-Planck equation, which determines
evolution of the particle density in phase space, onto the spatial coordinate
x. The result is the Smoluchowski equation, valid in the overdamped limit,
m->0, with a series of corrections expanded in powers of m. They are determined
unambiguously within the recurrence mapping procedure. The method and the
results are interpreted on the simplest model with no field and on the damped
harmonic oscillator.Comment: 13 pages, 1 figur
Second Order Dissipative Fluid Dynamics for Ultra-Relativistic Nuclear Collisions
The M\"uller-Israel-Stewart second order theory of relativistic imperfect
fluids based on Grad's moment method is used to study the expansion of hot
matter produced in ultra-relativistic heavy ion collisions. The temperature
evolution is investigated in the framework of the Bjorken boost-invariant
scaling limit. The results of these second-order theories are compared to those
of first-order theories due to Eckart and to Landau and Lifshitz and those of
zeroth order (perfect fluid) due to Euler.Comment: 5 pages, 4 figures, size of y-axis tick marks for Figs. 3 and 4 fixe
Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids
We use a modified Shan-Chen, noiseless lattice-BGK model for binary
immiscible, incompressible, athermal fluids in three dimensions to simulate the
coarsening of domains following a deep quench below the spinodal point from a
symmetric and homogeneous mixture into a two-phase configuration. We find the
average domain size growing with time as , where increases
in the range , consistent with a crossover between
diffusive and hydrodynamic viscous, , behaviour. We find
good collapse onto a single scaling function, yet the domain growth exponents
differ from others' works' for similar values of the unique characteristic
length and time that can be constructed out of the fluid's parameters. This
rebuts claims of universality for the dynamical scaling hypothesis. At early
times, we also find a crossover from to in the scaled structure
function, which disappears when the dynamical scaling reasonably improves at
later times. This excludes noise as the cause for a behaviour, as
proposed by others. We also observe exponential temporal growth of the
structure function during the initial stages of the dynamics and for
wavenumbers less than a threshold value.Comment: 45 pages, 18 figures. Accepted for publication in Physical Review
Evaporation boundary conditions for the R13 equations of rarefied gas dynamics
The regularized 13 moment (R13) equations are a macroscopic model for the description of rarefied gas flows in the transition regime. The equations have been shown to give meaningful results for Knudsen numbers up to about 0.5. Here, their range of applicability is extended by deriving and testing boundary conditions for evaporating and condensing interfaces. The macroscopic interface conditions are derived from the microscopic interface conditions of kinetic theory. Tests include evaporation into a half-space and evaporation/condensation of a vapor between two liquid surfaces of different temperatures. Comparison indicates that overall the R13 equations agree better with microscopic solutions than classical hydrodynamics
Celebrating Cercignani's conjecture for the Boltzmann equation
Cercignani's conjecture assumes a linear inequality between the entropy and
entropy production functionals for Boltzmann's nonlinear integral operator in
rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities
and spectral gap inequalities, this issue has been at the core of the renewal
of the mathematical theory of convergence to thermodynamical equilibrium for
rarefied gases over the past decade. In this review paper, we survey the
various positive and negative results which were obtained since the conjecture
was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani,
powerful mind and great scientist, one of the founders of the modern theory
of the Boltzmann equation. 24 pages. V2: correction of some typos and one
ref. adde
- …
