1,182 research outputs found

    A polymorphism in the base excision repair gene PARP2 is associated with differential prognosis by chemotherapy among postmenopausal breast cancer patients.

    Get PDF
    BACKGROUND: Personalized therapy considering clinical and genetic patient characteristics will further improve breast cancer survival. Two widely used treatments, chemotherapy and radiotherapy, can induce oxidative DNA damage and, if not repaired, cell death. Since base excision repair (BER) activity is specific for oxidative DNA damage, we hypothesized that germline genetic variation in this pathway will affect breast cancer-specific survival depending on treatment. METHODS: We assessed in 1,408 postmenopausal breast cancer patients from the German MARIE study whether cancer specific survival after adjuvant chemotherapy, anthracycline chemotherapy, and radiotherapy is modulated by 127 Single Nucleotide Polymorphisms (SNPs) in 21 BER genes. For SNPs with interaction terms showing p<0.1 (likelihood ratio test) using multivariable Cox proportional hazard analyses, replication in 6,392 patients from nine studies of the Breast Cancer Association Consortium (BCAC) was performed. RESULTS: rs878156 in PARP2 showed a differential effect by chemotherapy (p=0.093) and was replicated in BCAC studies (p=0.009; combined analysis p=0.002). Compared to non-carriers, carriers of the variant G allele (minor allele frequency=0.07) showed better survival after chemotherapy (combined allelic hazard ratio (HR)=0.75, 95% 0.53-1.07) and poorer survival when not treated with chemotherapy (HR=1.42, 95% 1.08-1.85). A similar effect modification by rs878156 was observed for anthracycline-based chemotherapy in both MARIE and BCAC, with improved survival in carriers (combined allelic HR=0.73, 95% CI 0.40-1.32). None of the SNPs showed significant differential effects by radiotherapy. CONCLUSIONS: Our data suggest for the first time that a SNP in PARP2, rs878156, may together with other genetic variants modulate cancer specific survival in breast cancer patients depending on chemotherapy. These germline SNPs could contribute towards the design of predictive tests for breast cancer patients

    Проблемы разработки стратегии построения технологии контекстного обучения педагогов

    Full text link
    AIMS/HYPOTHESIS: The evidence on the association between pioglitazone use and bladder cancer is contradictory, with many studies subject to allocation bias. The aim of our study was to examine the effect of exposure to pioglitazone on bladder cancer risk internationally across several cohorts. The potential for allocation bias was minimised by focusing on the cumulative effect of pioglitazone as the primary endpoint using a time-dependent approach. METHODS: Prescription, cancer and mortality data from people with type 2 diabetes were obtained from six populations across the world (British Columbia, Finland, Manchester, Rotterdam, Scotland and the UK Clinical Practice Research Datalink). A discrete time failure analysis using Poisson regression was applied separately to data from each centre to model the effect of cumulative drug exposure on bladder cancer incidence, with time-dependent adjustment for ever use of pioglitazone. These were then pooled using fixed and random effects meta-regression. RESULTS: Data were collated on 1.01 million persons over 5.9 million person-years. There were 3,248 cases of incident bladder cancer, with 117 exposed cases and a median follow-up duration of 4.0 to 7.4 years. Overall, there was no evidence for any association between cumulative exposure to pioglitazone and bladder cancer in men (rate ratio [RR] per 100 days of cumulative exposure, 1.01; 95% CI 0.97, 1.06) or women (RR 1.04; 95% CI 0.97, 1.11) after adjustment for age, calendar year, diabetes duration, smoking and any ever use of pioglitazone. No association was observed between rosiglitazone and bladder cancer in men (RR 1.01; 95% CI 0.98, 1.03) or women (RR 1.00; 95% CI 0.94, 1.07). CONCLUSIONS/INTERPRETATION: The cumulative use of pioglitazone or rosiglitazone was not associated with the incidence of bladder cancer in this large, pooled multipopulation analysis

    Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    Get PDF
    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10(−07)), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m(2) (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m(2) or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10(−05)). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci

    A Conscious Porcine Model for Sudden Cardiac Death

    Get PDF
    No abstract availabl

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore