527 research outputs found
Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER
A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot"
<Abstract of published report>N-Benzylimidazole, a potent inducer of rat liver enzymes involved in mutagenic activation of various carcinogens.
Effectiveness of existing casuarinas equisetifolia forests in mitigating tsunami damage
Field surveys were conducted on the eastern coastline of Sri Lanka to investigate which vegetation species are effective against a tsunami and to evaluate the effectiveness of existing Casuarina equisetifolia forests in tsunami mitigation. Open gaps in C. equisetifolia forests were identified as a disadvantage, and introduction of a new vegetation belt in front of the existing C. equisetifolia forest is proposed to reduce the disadvantages of the open gap. A numerical model based on two-dimensional nonlinear long-wave equations was applied to explain the present situation of open gaps in C. equisetifolia forests, and to evaluate the effectiveness of combined vegetation system. The results of the numerical simulation for existing conditions of C. equisetifolia forests revealed that the tsunami force ratio (R = tsunami force with vegetation/tsunami force without vegetation) was 1.4 at the gap exit. The species selected for the front vegetation layers were Pandanus odoratissimus. A numerical simulation of the modified system revealed that R was reduced to 0.7 in the combined P. odoratissimus and C. equisetifolia system. The optimal width of P. odoratissimus (W1) calculated from the numerical simulation was W1=10 m. Establishment of a new front vegetation layer except for open gaps that are essential, such as access roads to the beach, is proposed
Zebrafish hoxd4a Acts Upstream of meis1.1 to Direct Vasculogenesis, Angiogenesis and Hematopoiesis
10.1371/journal.pone.0058857PLoS ONE83
Half-life and internal conversion electron measurements in low-lying levels of 125, 127 Ba
The level properties in the low energy region of 125, 127 Ba were studied through the decays of 125, 127 La by using the JAERI on-line mass separator (JAERI-ISOL). The half-lives of the excited states and the internal conversion coefficients were determined for the first time by the β-γ delayed coincidence technique and by conversion electron measurements, respectively. The half-life of the long-lived isomeric state of 127 Ba (1.93 s) was determined by spectrum multiscaling measurements. Although the detailed decay schemes have been proposed, no evidence of a parity doublet has been observed. The level properties with respect to the transition probabilities are well interpreted by the Nilsson model.journal articl
Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides
The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ∼24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ∼20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ∼30 days.Universidad Nacional De La Plat
Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides
The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ∼24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ∼20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ∼30 days.Universidad Nacional De La Plat
- …
