6,584 research outputs found
Accretion physics of AM Herculis binaries, I. Results from one-dimensional stationary radiation hydrodynamics
We have solved the one-dimensional stationary two-fluid hydrodynamic
equations for post-shock flows on accreting magnetic white dwarfs simultaneous
with the fully frequency and angle-dependent radiative transfer for cyclotron
radiation and bremsstrahlung. Magnetic field strengths B = 10 to 100 MG are
considered. At given B, this theory relates the properties of the emission
region to a single physical parameter, the mass flow density (or accretion rate
per unit area). We present the normalized temperature profiles and fit formulae
for the peak electron temperature, the geometrical shock height, and the column
density of the post-shock flow. The results apply to pillbox-shaped emission
regions. With a first-order temperature correction they can also be used for
narrower columns provided they are not too tall.Comment: 10 pages with 10 Postscript figures, accepted for publication in
Astronomy & Astrophysics. The source file contains Table 1a/b in ASCII forma
Anomalies and O-plane charges in orientifolded brane tilings
We investigate orientifold of brane tilings. We clarify how the cancellations
of gauge anomaly and Witten's anomaly are guaranteed by the conservation of the
D5-brane charge. We also discuss the relation between brane tilings and the
dual Calabi-Yau cones realized as the moduli spaces of gauge theories. Two
types of flavor D5-branes in brane tilings and corresponding superpotentials of
fundamental quark fields are proposed, and it is shown that the massless loci
of these quarks in the moduli space correctly reproduce the worldvolume of
flavor D7-branes in the Calabi-Yau cone dual to the fivebrane system.Comment: 46 pages, 19 figure
Polynuclear growth model, GOE and random matrix with deterministic source
We present a random matrix interpretation of the distribution functions which
have appeared in the study of the one-dimensional polynuclear growth (PNG)
model with external sources. It is shown that the distribution, GOE, which
is defined as the square of the GOE Tracy-Widom distribution, can be obtained
as the scaled largest eigenvalue distribution of a special case of a random
matrix model with a deterministic source, which have been studied in a
different context previously. Compared to the original interpretation of the
GOE as ``the square of GOE'', ours has an advantage that it can also
describe the transition from the GUE Tracy-Widom distribution to the GOE.
We further demonstrate that our random matrix interpretation can be obtained
naturally by noting the similarity of the topology between a certain
non-colliding Brownian motion model and the multi-layer PNG model with an
external source. This provides us with a multi-matrix model interpretation of
the multi-point height distributions of the PNG model with an external source.Comment: 27pages, 4 figure
New Gauged Linear Sigma Models for 8D HyperKahler Manifolds and Calabi-Yau Crystals
We propose two kinds of gauged linear sigma models whose moduli spaces are
real eight-dimensional hyperKahler and Calabi-Yau manifolds, respectively.
Here, hyperKahler manifolds have sp(2) holonomy in general and are dual to Type
IIB (p,q)5-brane configurations. On the other hand, Calabi-Yau fourfolds are
toric varieties expressed as quotient spaces. Our model involving fourfolds is
different from the usual one which is directly related to a symplectic quotient
procedure. Remarkable features in newly-found three-dimensional
Chern-Simons-matter theories appear here as well, such as dynamical
Fayet-Iliopoulos parameters, one dualized photon and its residual discrete
gauge symmetry.Comment: 20 pages, 1 figure; v2: minor changes and references added; v3:
statements improved, newer than JHEP versio
Vertically coupled double quantum dots in magnetic fields
Ground-state and excited-state properties of vertically coupled double
quantum dots are studied by exact diagonalization. Magic-number total angular
momenta that minimize the total energy are found to reflect a crossover between
electron configurations dominated by intra-layer correlation and ones dominated
by inter-layer correlation. The position of the crossover is governed by the
strength of the inter-layer electron tunneling and magnetic field. The magic
numbers should have an observable effect on the far infra-red optical
absorption spectrum, since Kohn's theorem does not hold when the confinement
potential is different for two dots. This is indeed confirmed here from a
numerical calculation that includes Landau level mixing. Our results take full
account of the effect of spin degrees of freedom. A key feature is that the
total spin, , of the system and the magic-number angular momentum are
intimately linked because of strong electron correlation. Thus jumps hand
in hand with the total angular momentum as the magnetic field is varied. One
important consequence of this is that the spin blockade (an inhibition of
single-electron tunneling) should occur in some magnetic field regions because
of a spin selection rule. Owing to the flexibility arising from the presence of
both intra-layer and inter-layer correlations, the spin blockade is easier to
realize in double dots than in single dots.Comment: to be published in Phys. Rev. B1
- …
