2,033 research outputs found

    Coulomb breakup effects on the elastic cross section of 6^6He+209^{209}Bi scattering near Coulomb barrier energies

    Full text link
    We accurately analyze the 6^6He+209^{209}Bi scattering at 19 and 22.5 MeV near the Coulomb barrier energy, using the continuum-discretized coupled-channels method (CDCC) based on the nn+nn+4^4He+209^{209}Bi four-body model. The three-body breakup continuum of 6^6He is discretized by diagonalizing the internal Hamiltonian of 6^6He in a space spanned by the Gaussian basis functions. The calculated elastic and total reaction cross sections are in good agreement with the experimental data, while the CDCC calculation based on the di-neutron model of 6^6He, i.e., the 2n^2n+4^{4}He+209^{209}Bi three-body model, does not reproduce the data.Comment: 5 pages, 5 figures, uses REVTeX 4, submitted to Phys. Rev.

    Role of quark-quark correlation in baryon structure and non-leptonic weak transitions of hyperons

    Full text link
    We study the role of quark-quark correlation in the baryon structure and, in particular, the hyperon non-leptonic weak decay, which is sensitive to the correlation between quarks in the spin-0 channel. We rigorously solve non-relativistic three-body problem for SU(3) ground state baryons to take into account the quark-pair correlation explicitly. With the suitable attraction in the spin-0 channel, resulting static baryon properties as well as the parity conserving weak decay amplitudes agree with the experimental values. Special emphasis is placed also on the effect of the SU(6) spin-flavor symmetry breaking on the baryon structure. Although the SU(6) breaking effects on the local behavior of the quark wave functions are considerable due to the spin-0 attraction, the calculated magnetic moments are almost the same as the naive SU(6) expectations

    Zero-curvature condition in two dimensions. Relativistic particle models and finite \W-transformations

    Full text link
    A relation between an Sp(2M)Sp(2M) gauge particle model and the zero-curvature condition in a two-dimensional gauge theory is presented. For the Sp(4)Sp(4) case we construct finite \W-transformations.Comment: 14 pages, UTTG-04-9

    Kaon-nucleon interaction in the extended chiral SU(3) quark model

    Full text link
    The chiral SU(3) quark model is extended to include the coupling between the quark and vector chiral fields. The one-gluon exchange (OGE) which dominantly governs the short-range quark-quark interaction in the original chiral SU(3) quark model is now nearly replaced by the vector-meson exchange. Using this model, the isospin I=0 and I=1 kaon-nucleon S, P, D, F wave phase shifts are dynamically studied by solving the resonating group method (RGM) equation. Similar to those given by the original chiral SU(3) quark model, the calculated results for many partial waves are consistent with the experiment, while there is no improvement in this new approach for the P_{13} and D_{15} channels, of which the theoretical phase shifts are too much repulsive and attractive respectively when the laboratory momentum of the kaon meson is greater than 300 MeV.Comment: 19 pages, 16 figures. Accepted by Phys. Rev.

    Particle Mechanics Models with W-symmetries

    Full text link
    We introduce a particle mechanics model with Sp(2M2M) gauge invariance. Different partial gauge-fixings by means of sl(2) embeddings on the gauge algebra lead to reduced models which are invariant under diffeomorphisms and classical non-linear \W-transformations as the residual gauge symmetries thus providing a set of models of gauge and matter fields coupled in a \W-invariant way. The equations of motion for the matter variables give Lax operators in a matrix form. We examine several examples in detail and discuss the issue of integration of infinitesimal \W-transformations.Comment: 34 pages, LaTeX, no figures. Several changes (including Title) and new material added. Version to appear in Ann. Phy

    Determination of S17 from 8B breakup by means of the method of continuum-discretized coupled-channels

    Full text link
    The astrophysical factor for 7Be(p,\gamma)8B at zero energy, S17(0), is determined from an analysis of 208Pb(8B, p+7Be)208Pb at 52 MeV/nucleon by means of the method of continuum-discretized coupled-channels (CDCC) taking account of all nuclear and Coulomb breakup processes. The asymptotic normalization coefficient (ANC) method is used to extract S17(0) from the calculated breakup-cross-section. The main result of the present paper is S17(0)=20.9 +2.0/-1.9 eV b. The error consists of 8.4% experimental systematic error and the error due to the ambiguity in the s-wave p-7Be scattering length. This value of S17(0) differs from the one extracted with the first-order perturbation theory including Coulomb breakup by dipole transitions: 18.9 +/- 1.8 eV b. It turns out that the difference is due to the inclusion of the nuclear and Coulomb-quadrupole transitions and multi-step processes of all-order in the present work. The p-7Be interaction potential used in the CDCC calculation is also used in the ANC analysis of 7Be(p,\gamma)8B. The value of S17(0)=21.7 +0.62/-0.55 eV b obtained is consistent with the previous one obtained from a precise measurement of the p-capture reaction cross section extrapolated to zero incident energy, S17(0)=22.1 +/- 0.6 (expt) +/- 0.6 (theo) eV b, where (theo) stands for the error in the extrapolation. Thus, the agreement between the values of S17(0) obtained from direct 7Be(p,\gamma)8B and indirect 8B-breakup measurements is significantly improved.Comment: 13 pages, 9 figures, published in PR

    Gaussian expansion approach to Coulomb breakup

    Full text link
    An accurate treatment of Coulomb breakup reactions is presented by using both the Gaussian expansion method and the method of continuum discretized coupled channels. As L2L^2-type basis functions for describing bound- and continuum-states of a projectile, we take complex-range Gaussian functions, which form in good approximation a complete set in a large configuration space being important for Coulomb-breakup processes. Accuracy of the method is tested quantitatively for 8B+58^{8}{\rm B}+^{58}Ni scattering at 25.8 MeV.Comment: 4 pages, 4 figures; typos removed, a reference added for introduction and submitted to Phys. Rev. C as a brief repor
    corecore