1,435 research outputs found
Impact of science objectives and requirements on probe mission and system design
Problem areas in probe science technology are discussed that require a solution before probe systems can actually be designed. Considered are the effects of the model atmospheres on probe design; secondly, the effects of implementing the requirements to locate and measure the clouds and, trade-offs between descent sampling and measurement criteria as they affect probe system design
Tumor necrosis factor-alpha regulates the expression of inducible costimulator receptor ligand on CD34+ progenitor cells during differentiation into antigen presenting cells
The inducible costimulator receptor (ICOS) is a third member of the CD28 receptor family that regulates T cell activation and function. ICOS binds to a newly identified ligand on antigen presenting cells different from the CD152 ligands CD80 and CD86. We used soluble ICOSIg and a newly developed murine anti-human ICOS ligand (ICOSL) monoclonal antibody to further characterize the ICOSL during ontogeny of antigen presenting cells. In a previous study, we found that ICOSL is expressed on monocytes, dendritic cells, and B cells. To define when ICOSL is first expressed on myeloid antigen presenting cells, we examined ICOSL expression on CD34 cells in bone marrow. We found that CD34bright cells regardless of their myeloid commitment were ICOSL , whereas ICOSL was first expressed when CD34 expression diminished and the myeloid marker CD33 appeared
Elastic properties of cubic crystals: Every's versus Blackman's diagram
Blackman's diagram of two dimensionless ratios of elastic constants is
frequently used to correlate elastic properties of cubic crystals with
interatomic bondings. Every's diagram of a different set of two dimensionless
variables was used by us for classification of various properties of such
crystals. We compare these two ways of characterization of elastic properties
of cubic materials and consider the description of various groups of materials,
e.g. simple metals, oxides, and alkali halides. With exception of intermediate
valent compounds, the correlation coefficients for Every's diagrams of various
groups of materials are greater than for Blackaman's diagrams, revealing the
existence of a linear relationship between two dimensionless Every's variables.
Alignment of elements and compounds along lines of constant Poisson's ratio
, ( arbitrary perpendicular to ) is
observed. Division of the stability region in Blackman's diagram into region of
complete auxetics, auxetics and non-auxetics is introduced. Correlations of a
scaling and an acoustic anisotropy parameter are considered.Comment: 8 pages, 9 figures, presented on The Ninth International School on
Theoretical Physics "Symmetry and Structural Properties of Condensed Matter",
5 - 12 September 2007, Myczkowce, Polan
Gyroscopes based on nitrogen-vacancy centers in diamond
We propose solid-state gyroscopes based on ensembles of negatively charged
nitrogen-vacancy () centers in diamond. In one scheme, rotation of
the nitrogen-vacancy symmetry axis will induce Berry phase shifts in the electronic ground-state coherences proportional to the solid angle
subtended by the symmetry axis. We estimate sensitivity in the range of
in a 1 sensor volume using
a simple Ramsey sequence. Incorporating dynamical decoupling to suppress
dipolar relaxation may yield sensitivity at the level of . With a modified Ramsey scheme, Berry phase shifts in the
hyperfine sublevels would be employed. The projected sensitivity
is in the range of , however the smaller
gyromagnetic ratio reduces sensitivity to magnetic-field noise by several
orders of magnitude. Reaching would represent
an order of magnitude improvement over other compact, solid-state gyroscope
technologies.Comment: 3 figures, 5 page
Physical properties of thermoelectric zinc antimonide using first-principles calculations
We report first principles calculations of the structural, electronic,
elastic and vibrational properties of the semiconducting orthorhombic ZnSb
compound. We study also the intrinsic point defects in order to eventually
improve the thermoelectric properties of this already very promising
thermoelectric material. Concerning the electronic properties, in addition to
the band structure, we show that the Zn (Sb) crystallographically equivalent
atoms are not exactly equivalent from the electronic point of view. Lattice
dynamics, elastic and thermodynamic properties are found to be in good
agreement with experiments and they confirm the non equivalency of the zinc and
antimony atoms from the vibrational point of view. The calculated elastic
properties show a relatively weak anisotropy and the hardest direction is the y
direction. We observe the presence of low energy modes involving both Zn and Sb
atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we
suggest that the interactions of these modes with acoustic phonons could
explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the
most stable defects and this explains the intrinsic p-type conductivity of
ZnSb.Comment: 33 pages, 8 figure
Cancellation of nonlinear Zeeman shifts with light shifts
Nonlinear Zeeman (NLZ) shifts arising from magnetic-field mixing of the two
hyperfine ground-states in alkali atoms lead to splitting of magnetic-resonance
lines. This is a major source of sensitivity degradation and the so-called
"heading errors" of alkali-vapor atomic magnetometers operating in the
geophysical field range (B approx. 0.2-0.7 G). Here, it is shown theoretically
and experimentally that NLZ shifts can be effectively canceled by light shifts
caused by a laser field of appropriate intensity, polarization and frequency, a
technique that can be readily applied in practical situations.Comment: 5 pages, 5 figures, to be published in PR
- …
