1,435 research outputs found

    Impact of science objectives and requirements on probe mission and system design

    Get PDF
    Problem areas in probe science technology are discussed that require a solution before probe systems can actually be designed. Considered are the effects of the model atmospheres on probe design; secondly, the effects of implementing the requirements to locate and measure the clouds and, trade-offs between descent sampling and measurement criteria as they affect probe system design

    Tumor necrosis factor-alpha regulates the expression of inducible costimulator receptor ligand on CD34+ progenitor cells during differentiation into antigen presenting cells

    Get PDF
    The inducible costimulator receptor (ICOS) is a third member of the CD28 receptor family that regulates T cell activation and function. ICOS binds to a newly identified ligand on antigen presenting cells different from the CD152 ligands CD80 and CD86. We used soluble ICOSIg and a newly developed murine anti-human ICOS ligand (ICOSL) monoclonal antibody to further characterize the ICOSL during ontogeny of antigen presenting cells. In a previous study, we found that ICOSL is expressed on monocytes, dendritic cells, and B cells. To define when ICOSL is first expressed on myeloid antigen presenting cells, we examined ICOSL expression on CD34 cells in bone marrow. We found that CD34bright cells regardless of their myeloid commitment were ICOSL , whereas ICOSL was first expressed when CD34 expression diminished and the myeloid marker CD33 appeared

    Elastic properties of cubic crystals: Every's versus Blackman's diagram

    Full text link
    Blackman's diagram of two dimensionless ratios of elastic constants is frequently used to correlate elastic properties of cubic crystals with interatomic bondings. Every's diagram of a different set of two dimensionless variables was used by us for classification of various properties of such crystals. We compare these two ways of characterization of elastic properties of cubic materials and consider the description of various groups of materials, e.g. simple metals, oxides, and alkali halides. With exception of intermediate valent compounds, the correlation coefficients for Every's diagrams of various groups of materials are greater than for Blackaman's diagrams, revealing the existence of a linear relationship between two dimensionless Every's variables. Alignment of elements and compounds along lines of constant Poisson's ratio ν(,m)\nu(,\textbf{m}), (m\textbf{m} arbitrary perpendicular to ) is observed. Division of the stability region in Blackman's diagram into region of complete auxetics, auxetics and non-auxetics is introduced. Correlations of a scaling and an acoustic anisotropy parameter are considered.Comment: 8 pages, 9 figures, presented on The Ninth International School on Theoretical Physics "Symmetry and Structural Properties of Condensed Matter", 5 - 12 September 2007, Myczkowce, Polan

    Gyroscopes based on nitrogen-vacancy centers in diamond

    Full text link
    We propose solid-state gyroscopes based on ensembles of negatively charged nitrogen-vacancy (NV{\rm NV^-}) centers in diamond. In one scheme, rotation of the nitrogen-vacancy symmetry axis will induce Berry phase shifts in the NV{\rm NV^{-}} electronic ground-state coherences proportional to the solid angle subtended by the symmetry axis. We estimate sensitivity in the range of 5×103rad/s/Hz5\times10^{-3} {\rm rad/s/\sqrt{Hz}} in a 1 mm3{\rm mm^3} sensor volume using a simple Ramsey sequence. Incorporating dynamical decoupling to suppress dipolar relaxation may yield sensitivity at the level of 105rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}}. With a modified Ramsey scheme, Berry phase shifts in the 14N{\rm ^{14}N} hyperfine sublevels would be employed. The projected sensitivity is in the range of 105rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}}, however the smaller gyromagnetic ratio reduces sensitivity to magnetic-field noise by several orders of magnitude. Reaching 105rad/s/Hz10^{-5} {\rm rad/s/\sqrt{Hz}} would represent an order of magnitude improvement over other compact, solid-state gyroscope technologies.Comment: 3 figures, 5 page

    Physical properties of thermoelectric zinc antimonide using first-principles calculations

    Full text link
    We report first principles calculations of the structural, electronic, elastic and vibrational properties of the semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually improve the thermoelectric properties of this already very promising thermoelectric material. Concerning the electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic and thermodynamic properties are found to be in good agreement with experiments and they confirm the non equivalency of the zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes involving both Zn and Sb atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we suggest that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the most stable defects and this explains the intrinsic p-type conductivity of ZnSb.Comment: 33 pages, 8 figure

    Cancellation of nonlinear Zeeman shifts with light shifts

    Full text link
    Nonlinear Zeeman (NLZ) shifts arising from magnetic-field mixing of the two hyperfine ground-states in alkali atoms lead to splitting of magnetic-resonance lines. This is a major source of sensitivity degradation and the so-called "heading errors" of alkali-vapor atomic magnetometers operating in the geophysical field range (B approx. 0.2-0.7 G). Here, it is shown theoretically and experimentally that NLZ shifts can be effectively canceled by light shifts caused by a laser field of appropriate intensity, polarization and frequency, a technique that can be readily applied in practical situations.Comment: 5 pages, 5 figures, to be published in PR
    corecore