741 research outputs found
Triplet correlations in two-dimensional colloidal model liquids
Three-body distribution functions in classical fluids have been theoretically
investigated many times, but have never been measured directly. We present
experimental three-point correlation functions that are computed from particle
configurations measured by means of video-microscopy in two types of
quasi-two-dimensional colloidal model fluids: a system of charged colloidal
particles and a system of paramagnetic colloids. In the first system the
particles interact via a Yukawa potential, in the second via a potential
. We find for both systems very similar results: on increasing
the coupling between the particles one observes the gradual formation of a
crystal-like local order due to triplet correlations, even though the system is
still deep inside the fluid phase. These are mainly packing effects as is
evident from the close resemblance between the results for the two systems
having completely different pair-interaction potentials.Comment: many pages, 8 figures, contribution to the special issue in J.Phys.
Cond. Mat. of the CECAM meeting in LYON ''Many-body....'
Strong Attraction between Charged Spheres due to Metastable Ionized States
We report a mechanism which can lead to long range attractions between
like-charged spherical macroions, stemming from the existence of metastable
ionized states. We show that the ground state of a single highly charged
colloid plus a few excess counterions is overcharged. For the case of two
highly charged macroions in their neutralizing divalent counterion solution we
demonstrate that, in the regime of strong Coulomb coupling, the counterion
clouds are very likely to be unevenly distributed, leading to one overcharged
and one undercharged macroion. This long-living metastable configuration in
turn leads to a long range Coulomb attraction.Comment: REVTEX-published versio
Charge Renormalization, Effective Interactions, and Thermodynamics of Deionized Colloidal Suspensions
Thermodynamic properties of charge-stabilised colloidal suspensions depend
sensitively on the effective charge of the macroions, which can be
substantially lower than the bare charge in the case of strong
counterion-macroion association. A theory of charge renormalization is
proposed, combining an effective one-component model of charged colloids with a
thermal criterion for distinguishing between free and associated counterions.
The theory predicts, with minimal computational effort, osmotic pressures of
deionized suspensions of highly charged colloids in close agreement with
large-scale simulations of the primitive model.Comment: 15 pages, 7 figure
Phase diagram of aggregation of oppositely charged colloids in salty water
Aggregation of two oppositely charged colloids in salty water is studied. We
focus on the role of Coulomb interaction in strongly asymmetric systems in
which the charge and size of one colloid is much larger than the other one. In
the solution, each large colloid (macroion) attracts certain number of
oppositely charged small colloids (-ion) to form a complex. If the
concentration ratio of the two colloids is such that complexes are not strongly
charged, they condense in a macroscopic aggregate. As a result, the phase
diagram in a plane of concentrations of two colloids consists of an aggregation
domain sandwiched between two domains of stable solutions of complexes. The
aggregation domain has a central part of total aggregation and two wings
corresponding to partial aggregation. A quantitative theory of the phase
diagram in the presence of monovalent salt is developed. It is shown that as
the Debye-H\"{u}ckel screening radius decreases, the aggregation domain
grows, but the relative size of the partial aggregation domains becomes much
smaller. As an important application of the theory, we consider solutions of
long double-helix DNA with strongly charged positive spheres (artificial
chromatin). We also consider implications of our theory for in vitro
experiments with the natural chromatin. Finally, the effect of different shapes
of macroions on the phase diagram is discussed.Comment: 10 pages, 9 figures. The text is rewritten, but results are not
change
Three-Particle Correlations in Simple Liquids
We use video microscopy to follow the phase-space trajectory of a
two-dimensional colloidal model liquid and calculate three-point correlation
functions from the measured particle configurations. Approaching the
fluid-solid transition by increasing the strength of the pair-interaction
potential, one observes the gradual formation of a crystal-like local order due
to triplet correlations, while being still deep inside the fluid phase.
Furthermore, we show that in a strongly interacting system the Born-Green
equation can be satisfied only with the full triplet correlation function but
not with three-body distribution functions obtained from superposing
pair-correlations (Kirkwood superposition approximation).Comment: 4 pages, submitted to PRL, experimental paper, 2nd version: Fig.1 and
two new paragraphs have been adde
A new vent limpet in the genus lepetodrilus (gastropoda: lepetodrilidae) from southern ocean hydrothermal vent fields showing high phenotypic plasticity
The recently discovered hydrothermal vent ecosystems in the Southern Ocean host a suite of vent-endemic species, including lepetodrilid limpets dominating in abundance. Limpets were collected from chimneys, basalts and megafauna of the East Scotia Ridge segments E2 and E9 and the Kemp Caldera at the southern end of the South Sandwich Island arc. The limpets varied in size and shell morphology between vent fields and displayed a high degree of phenotypic plasticity. Size frequency analyses between vent fields suggests continuous reproduction in the limpet and irregular colonisation events. Phylogenetic reconstructions and comparisons of mitochondrial COI gene sequences revealed a level of genetic similarity between individuals from the three vent fields consistent with them belonging to a single molecular operational taxonomic unit. Here we describe Lepetodrilus concentricus n. sp., and evaluate its genetic distinctness and pylogenetic position with congeners based on the same gene. Results indicate that L. concentricus n. sp. is a sister species to L. atlanticus from Atlantic vents, with the two species estimated to have diverged within the last ∼5 million years
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
Composition and distribution of the peracarid crustacean fauna along a latitudinal transect off Victoria Land (Ross Sea, Antarctica) with special emphasis on the Cumacea
The following study was the first to describe composition and structure of the peracarid fauna systematically along a latitudinal transect off Victoria Land (Ross Sea, Antarctica). During the 19th Antarctic expedition of the Italian research vessel “Italica” in February 2004, macrobenthic samples were collected by means of a Rauschert dredge with a mesh size of 500 m at depths between 85 and 515 m. The composition of peracarid crustaceans, especially Cumacea was investigated. Peracarida contributed 63% to the total abundance of the fauna. The peracarid samples were dominated by amphipods (66%), whereas cumaceans were represented with 7%. Previously, only 13 cumacean species were known, now the number of species recorded from the Ross Sea increased to 34. Thus, the cumacean fauna of the Ross Sea, which was regarded as the poorest in terms of species richness, has to be considered as equivalent to that of other high Antarctic areas. Most important cumacean families concerning abundance and species richness were Leuconidae, Nannastacidae, and Diastylidae. Cumacean diversity was lowest at the northernmost area (Cape Adare). At the area off Coulman Island, which is characterized by muddy sediment, diversity was highest. Diversity and species number were higher at the deeper stations and abundance increased with latitude. A review of the bathymetric distribution of the Cumacea from the Ross Sea reveals that most species distribute across the Antarctic continental shelf and slope. So far, only few deep-sea records justify the assumption of a shallow-water–deep-sea relationship in some species of Ross Sea Cumacea, which is discussed from an evolutionary point of view
Influence of solvent granularity on the effective interaction between charged colloidal suspensions
We study the effect of solvent granularity on the effective force between two
charged colloidal particles by computer simulations of the primitive model of
strongly asymmetric electrolytes with an explicitly added hard sphere solvent.
Apart from molecular oscillating forces for nearly touching colloids which
arise from solvent and counterion layering, the counterions are attracted
towards the colloidal surfaces by solvent depletion providing a simple
statistical description of hydration. This, in turn, has an important influence
on the effective forces for larger distances which are considerably reduced as
compared to the prediction based on the primitive model. When these forces are
repulsive, the long-distance behaviour can be described by an effective Yukawa
pair potential with a solvent-renormalized charge. As a function of colloidal
volume fraction and added salt concentration, this solvent-renormalized charge
behaves qualitatively similar to that obtained via the Poisson-Boltzmann cell
model but there are quantitative differences. For divalent counterions and
nano-sized colloids, on the other hand, the hydration may lead to overscreened
colloids with mutual attraction while the primitive model yields repulsive
forces. All these new effects can be accounted for through a solvent-averaged
primitive model (SPM) which is obtained from the full model by integrating out
the solvent degrees of freedom. The SPM was used to access larger colloidal
particles without simulating the solvent explicitly.Comment: 14 pages, 16 craphic
RAFT dispersion polymerization : a method to tune the morphology of thymine-containing self-assemblies
YesThe synthesis and self-assembly of thymine-containing polymers were performed using RAFT dispersion polymerization. A combination of microscopy and scattering techniques was used to analyze the resultant complex morphologies. The primary observation from this study is that the obtained aggregates induced during the polymerization were well-defined despite the constituent copolymers possessing broad dispersities. Moreover, a variety of parameters, including the choice of polymerization solvent, the degree of polymerization of both blocks and the presence of an adenine-containing mediator, were observed to affect the resultant size and shape of the assembly.University of Warwick, National Science Foundation (U.S.) (NSF), Engineering and Physical Sciences Research Council (EPSRC
- …
