143 research outputs found
Viruses affecting lentil (Lens culinaris Medik.) in Greece; incidence and genetic variability of Bean leafroll virus and Pea enation mosaic virus
In Greece, lentil (Lens culinaris Medik.) crops are mainly established with non-certified seeds of local landraces, implying high risks for seed transmitted diseases. During April and May of the 2007–2012 growing seasons, surveys were conducted in eight regions of Greece (Attiki, Evros, Fthiotida, Korinthos, Kozani, Larissa, Lefkada and Viotia) to monitor virus incidence in lentil fields. A total of 1216 lentil samples, from plants exhibiting symptoms suggestive of virus infection, were analyzed from 2007 to 2009, using tissue-blot immunoassays (TBIA). Pea seed-borne mosaic virus (PSbMV) overall incidence was 4.9%, followed by Alfalfa mosaic virus (AMV) (2.4%) and Bean yellow mosaic virus (BYMV) (1.0%). When 274 of the samples were tested for the presence of luteoviruses, 38.8% were infected with Bean leafroll virus (BLRV). Since BLRV was not identified in the majority of the samples collected from 2007 to 2009, representative symptomatic plants (360 samples) were collected in further surveys performed from 2010 to 2012 and tested by ELISA. Two viruses prevailed in those samples: BLRV (36.1%) was associated with stunting, yellowing, and reddening symptoms and Pea enation mosaic virus-1 (PEMV-1) (35.0%) was associated with mosaic and mottling symptoms. PSbMV (2.2%), AMV (2.2%), BYMV (3.9%) and CMV (2.8%) were also detected. When the molecular variability was analyzed for representative isolates, collected from the main Greek lentil production areas, five BLRV isolates showed 95% identity for the coat protein (CP) gene and 99% for the 3’ end region. Three Greek PEMV isolates co-clustered with an isolate from Germany when their CP sequence was compared with isolates with no mutation in the aphid transmission gene. Overall, limited genetic variability was detected among Greek isolates of BLRV and PEMV
Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures
Systematic evaluation of immune regulation and modulation
Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers
Survey of Viruses Affecting Legume Crops in the Amhara and Oromia Regions of Ethiopia
Field surveys were undertaken to identify the viral diseases affecting lentil, faba bean, chickpea, pea,
fenugreek and grass pea in two regions of Ethiopia. The surveys were conducted in the regions of Amhara (Gonder
and Gojam administrative zones) and Oromia (Bale administrative zone) during the 2003/2004 and 2004/2005 growing
seasons, respectively. The survey covered 138 randomly selected fields (48 faba bean, 10 pea, 38 grass pea, 34
chickpea, 8 lentil) in the Amhara region, and 51 legume fields (29 faba bean, 12 pea, 3 lentil, 5 fenugreek, 2 chickpea)
in the Oromia region. Virus disease incidence was determined by laboratory testing of 100–200 randomly-collected
samples from each field against the antisera of 12 legume viruses. Of the 189 fields surveyed, 121 and 7 had, at the
time of the survey, a virus disease incidence of 1% or less and more than 6%, respectively, based on visual inspection
in the field; later laboratory testing showed that the number of fields in these two categories was in fact 99 and 56,
respectively. Serological tests indicated that the most important viruses in the Amhara region were Faba bean necrotic
yellows virus (FBNYV), Bean yellow mosaic virus (BYMV), Pea seed-borne mosaic virus (PSbMV) and the luteoviruses
[e.g. Beet western yellows virus (BWYV), Bean leaf roll virus (BLRV), Soybean dwarf virus (SbDV)]. By contrast, only
FBNYV and the luteoviruses were detected in the Oromia region. Other viruses, such as Broad bean mottle virus
(BBMV) and Alfalfa mosaic virus (AMV), were rarely detected in the Amhara region. This is the first report in Ethiopia
of natural infection of faba bean, pea and fenugreek with SbDV, of fenugreek with BWYV, and of grass pea with BYMV,
PSbMV and BWYV, and it is also the first recorded instance of BBMV infecting legume crops in Ethiopia
Scientific review of the impact of climate change on plant pests: a global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems.
Climate change represents an unprecedented challenge to the world?s biosphere and to the global community. It also represents a unique challenge for plant health. Human activities and increased market globalization, coupled with rising temperatures, has led to a situation that is favourable to pest movement and establishment. This scientific review assesses the potential effects of climate change on plant pests and consequently on plant health. The evidence assessed strongly indicates that climate change has already expanded some pests? host range and geographical distribution, and may further increase the risk of pest introduction to new areas. This calls for international cooperation and development of harmonized plant protection strategies to help countries successfully adapt their pest risk management measures to climate change.bitstream/item/224381/1/Scientific-review-of-the-impact-of-climate-2021.pd
Climate change and pathways used by pests as challenges to plant health in agriculture and forestry.
Climate change already challenges people?s livelihood globally and it also affects plant health. Rising temperatures facilitate the introduction and establishment of unwanted organisms, including arthropods, pathogens, and weeds (hereafter collectively called pests). For example, a single, unusually warm winter under temperate climatic conditions may be sufficient to assist the establishment of invasive plant pests, which otherwise would not be able to establish. In addition, the increased market globalization and related transport of recent years, coupled with increased temperatures, has led to favorable conditions for pest movement, invasion, and establishment worldwide. Most published studies indicate that, in general, pest risk will increase in agricultural ecosystems under climate-change scenarios, especially in today?s cooler arctic, boreal, temperate, and subtropical regions. This is also mostly true for forestry. Some pests have already expanded their host range or distribution, at least in part due to changes in climate. Examples of these pests, selected according to their relevance in different geographical areas, are summarized here. The main pathways used by them, directly and/or indirectly, are also discussed. Understanding these path-ways can support decisions about mitigation and adaptation measures. The review concludes that preventive mitigation and adaptation measures, including biosecurity, are key to reducing the projected increases in pest risk in agriculture, horticulture, and forestry. Therefore, the sustainable management of pests is urgently needed. It requires holistic solutions, including effective phytosanitary regulations, globally coordinated diagnostic and surveillance systems, pest risk modeling and analysis, and preparedness for pro-active management
Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry
Climate change already challenges people’s livelihood globally and it also affects plant health. Rising temperatures facilitate the introduction and establishment of unwanted organisms, including arthropods, pathogens, and weeds (hereafter collectively called pests). For example, a single, unusually warm winter under temperate climatic conditions may be sufficient to assist the establishment of invasive plant pests, which otherwise would not be able to establish. In addition, the increased market globalization and related transport of recent years, coupled with increased temperatures, has led to favorable conditions for pest movement, invasion, and establishment worldwide. Most published studies indicate that, in general, pest risk will increase in agricultural ecosystems under climate-change scenarios, especially in today’s cooler arctic, boreal, temperate, and subtropical regions. This is also mostly true for forestry. Some pests have already expanded their host range or distribution, at least in part due to changes in climate. Examples of these pests, selected according to their relevance in different geographical areas, are summarized here. The main pathways used by them, directly and/or indirectly, are also discussed. Understanding these pathways can support decisions about mitigation and adaptation measures. The review concludes that preventive mitigation and adaptation measures, including biosecurity, are key to reducing the projected increases in pest risk in agriculture, horticulture, and forestry. Therefore, the sustainable management of pests is urgently needed. It requires holistic solutions, including effective phytosanitary regulations, globally coordinated diagnostic and surveillance systems, pest risk modeling and analysis, and preparedness for pro-active management
Trigger finger: etiology, evaluation, and treatment
Trigger finger is a common finger aliment, thought to be caused by inflammation and subsequent narrowing of the A1 pulley, which causes pain, clicking, catching, and loss of motion of the affected finger. Although it can occur in anyone, it is seen more frequently in the diabetic population and in women, typically in the fifth to sixth decade of life. The diagnosis is usually fairly straightforward, as most patients complain of clicking or locking of the finger, but other pathological processes such as fracture, tumor, or other traumatic soft tissue injuries must be excluded. Treatment modalities, including splinting, corticosteroid injection, or surgical release, are very effective and are tailored to the severity and duration of symptoms
Type I Interferon Drives Dendritic Cell Apoptosis via Multiple BH3-Only Proteins following Activation by PolyIC In Vivo
BACKGROUND: DC are activated by pathogen-associated molecular patterns (PAMPs), and this is pivotal for the induction of adaptive immune responses. Thereafter, the clearance of activated DC is crucial to prevent immune pathology. While PAMPs are of major interest for vaccine science due to their adjuvant potential, it is unclear whether and how PAMPs may affect DC viability. We aimed to elucidate the possible apoptotic mechanisms that control activated DC lifespan in response to PAMPs, particularly in vivo. METHODOLOGY/PRINCIPAL FINDINGS: We report that polyinosinic:polycytidylic acid (PolyIC, synthetic analogue of dsRNA) induces dramatic apoptosis of mouse splenic conventional DC (cDC) in vivo, predominantly affecting the CD8α subset, as shown by flow cytometry-based analysis of splenic DC subsets. Importantly, while Bim deficiency conferred only minor protection, cDC depletion was prevented in mice lacking Bim plus one of three other BH3-only proteins, either Puma, Noxa or Bid. Furthermore, we show that Type I Interferon (IFN) is necessary and sufficient for DC death both in vitro and in vivo, and that TLR3 and MAVS co-operate in IFNß production in vivo to induce DC death in response to PolyIC. CONCLUSIONS/SIGNIFICANCE: These results demonstrate for the first time in vivo that apoptosis restricts DC lifespan following activation by PolyIC, particularly affecting the CD8α cDC subset. Such DC apoptosis is mediated by the overlapping action of pro-apoptotic BH3-only proteins, including but not solely involving Bim, and is driven by Type I IFN. While Type I IFNs are important anti-viral factors, CD8α cDC are major cross-presenting cells and critical inducers of CTL. We discuss such paradoxical finding on DC death with PolyIC/Type I IFN. These results could contribute to understand immunosuppression associated with chronic infection, and to the optimization of DC-based therapies and the clinical use of PAMPs and Type I IFNs
- …
