939 research outputs found
Nuclear medium modifications of properties of kaons measured around threshold with FOPI
We report on the investigation of modifications of basic properties of K
and K mesons emitted from collisions of Ni+Ni at beam energy of 1.91A GeV.
Experimental K/K ratio are presented in a wide range of phase space
parameterized by kinetic energy and emission angle in the nucleon-nucleon
centre of mass. The component of the azimuthal distribution was extracted
as a function of rapidity and transverse momentum for central, and
semi-peripheral collisions. A comparison of these patterns with the HSD
transport model favours the existence of the kaon-nucleon in-medium potential.
For the IQMD model, this interaction scenario is confirmed in case of K,
whereas for K the picture is less clear.Comment: 7 pages, 3 figures, proceedings article of the 55th International
Winter Meeting on Nuclear Physics, Bormio (Italy) 201
Field induced stationary state for an accelerated tracer in a bath
Our interest goes to the behavior of a tracer particle, accelerated by a
constant and uniform external field, when the energy injected by the field is
redistributed through collision to a bath of unaccelerated particles. A non
equilibrium steady state is thereby reached. Solutions of a generalized
Boltzmann-Lorentz equation are analyzed analytically, in a versatile framework
that embeds the majority of tracer-bath interactions discussed in the
literature. These results --mostly derived for a one dimensional system-- are
successfully confronted to those of three independent numerical simulation
methods: a direct iterative solution, Gillespie algorithm, and the Direct
Simulation Monte Carlo technique. We work out the diffusion properties as well
as the velocity tails: large v, and either large -v, or v in the vicinity of
its lower cutoff whenever the velocity distribution is bounded from below.
Particular emphasis is put on the cold bath limit, with scatterers at rest,
which plays a special role in our model.Comment: 20 pages, 6 figures v3:minor corrections in sec.III and added
reference
Hip and spine bone mineral density are greater in master sprinters, but not endurance runners compared with non-athletic controls
Summary: We examined bone density in older athletes and controls. Sprinters had greater hip and spine bone density than endurance athletes and controls, whereas values were similar in the latter two groups. These results could not be explained by differences in impact, muscle size or power between sprint and endurance athletes.
Purpose: We examined the relationship between prolonged participation in regular sprint or endurance running and skeletal health at key clinical sites in older age, and the factors responsible for any associations which we observed.
Methods: We recruited 38 master sprint runners (28 males, 10 females, mean age 71 ± 7 years), 149 master endurance runners (111 males, 38 females, mean age 70 ± 6 years) and 59 non-athletic controls (29 males, 30 females, mean age 74 ± 5 years). Dual X-ray absorptiometry was used to assess hip and spine bone mineral density (BMD), body composition (lean and fat mass), whilst jump power was assessed with jumping mechanography. In athletes, vertical impacts were recorded over 7 days from a waist-worn accelerometer, and details of starting age, age-graded performance and training hours were recorded.
Results: In ANOVA models adjusted for sex, age, height, body composition, and jump power, sprinter hip BMD was 10 and 14% greater than that of endurance runners and controls respectively. Sprinter spine BMD was also greater than that of both endurance runners and controls. There were no differences in hip or spine BMD between endurance runners and controls. Stepwise regression showed only discipline (sprint/endurance), sex, and age as predictors of athlete spine BMD, whilst these variables and starting age were predictive of hip BMD.
Conclusions: Regular running is associated with greater BMD at the fracture-prone hip and spine sites in master sprinters but not endurance runners. These benefits cannot be explained by indicators of mechanical loading measured in this study including vertical impacts, body composition or muscular output
Emission patterns of neutral pions in 40 A MeV Ta+Au reactions
Differential cross sections of neutral pions emitted in 181Ta + 197Au
collisions at a beam energy of 39.5A MeV have been measured with the photon
spectrometer TAPS. The kinetic energy and transverse momentum spectra of
neutral pions cannot be properly described in the framework of the thermal
model, nor when the reabsorption of pions is accounted for in a
phenomenological model. However, high energy and high momentum tails of the
pion spectra can be well fitted through thermal distributions with unexpectedly
soft temperature parameters below 10 MeV.Comment: 16 pages (double-spaced), 5 figures; corrections after referee's
comments and suggestion
Effective conductivity in association with model structure and spatial inhomogeneity of polymer/carbon black composites
The relationship between effective conductivity and cell structure of
polyethylene/carbon composites as well as between effective conductivity and
spatial distribution of carbon black are discussed. Following Yoshida's model
both structures can, in a way, be said to be intermediate between the well
known Maxwell-Garnett (MG) and Bruggeman (BR) limiting structures. Using TEM
photographs on composites with various carbon blacks we have observed that the
larger is Garncarek's inhomogeneity measure H of two-dimensional (2D)
representative distribution of the carbon black, the smaller is the effective
conductivity of the composite.Comment: 7 pages, 9 figure
Physics Analysis Expert PAX: First Applications
PAX (Physics Analysis Expert) is a novel, C++ based toolkit designed to
assist teams in particle physics data analysis issues. The core of PAX are
event interpretation containers, holding relevant information about and
possible interpretations of a physics event. Providing this new level of
abstraction beyond the results of the detector reconstruction programs, PAX
facilitates the buildup and use of modern analysis factories. Class structure
and user command syntax of PAX are set up to support expert teams as well as
newcomers in preparing for the challenges expected to arise in the data
analysis at future hadron colliders.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 10 eps figures. PSN
THLT00
Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy
We develop information-theoretic measures of spatial structure and pattern in
more than one dimension. As is well known, the entropy density of a
two-dimensional configuration can be efficiently and accurately estimated via a
converging sequence of conditional entropies. We show that the manner in which
these conditional entropies converge to their asymptotic value serves as a
measure of global correlation and structure for spatial systems in any
dimension. We compare and contrast entropy-convergence with mutual-information
and structure-factor techniques for quantifying and detecting spatial
structure.Comment: 11 pages, 5 figures,
http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm
Mechanism of Solid-State Clumped Isotope Reordering in Carbonate Minerals from Aragonite Heating Experiments
The clumped isotope compositions of carbonate minerals are subject to alteration at elevated temperatures. Understanding the mechanism of solid-state reordering in carbonate minerals is important in our interpretations of past climates and the thermal history of rocks. The kinetics of solid-state isotope reordering has been previously studied through controlled heating experiments of calcite, dolomite and apatite. Here we further explore this issue through controlled heating experiments on aragonite. We find that Δ_(47) values generally decrease during heating of aragonite, but increase by 0.05–0.15‰ as aragonite starts to transform into calcite. We argue that this finding is consistent with the presence of an intermediate pool of immediately adjacent singly-substituted carbonate ion isotopologues (‘pairs’), which back-react to form clumped isotopologues during aragonite to calcite transformation, revealing the existence of kinetically preferred isotope exchange pathways. Our results reinforce the ‘reaction-diffusion’ model as the mechanism for solid-state clumped isotope reordering in carbonate minerals. Our experiments also reveal that the reordering kinetics in aragonite is faster than in calcite and dolomite, making its clumped isotope composition highly susceptible to alteration during early diagenesis, even before conversion to calcite
- …
