58,732 research outputs found
Fuselage structure using advanced technology fiber reinforced composites
A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures
A Cellular, Language Directed Computer Architecture
If a VLSI computer architecture is to influence the field
of computing in some major way, it must have attractive properties in all important aspects affecting the design, production, and the use of the resulting computers. A computer architecture that is believed to have such properties is briefly discussed
Recommended from our members
The Human Brain: A Multimedia Tutorial For The Independent Learner
The Human Brain is a multimedia, interactive, computer-based tutorial on the structure and function of the human nervous system. In creating it, we aim to solve a number of problems, both subject specific and general. As a subject, the structure and function of the nervous system is difficult to teach using traditional methods and there is a lack of integration in the teaching of structure and function. More generally, we are concerned with the difficulties of both assessing student understanding of a particular subject and remedying any deficiencies when the student is learning independently. Finally, we hope to resolve the conflict between linear and explorative modes of presentation of material in a teaching system
A review of quasi-coherent structures in a numerically simulated turbulent boundary layer
Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated
Polynomial Cointegration among Stationary Processes with Long Memory
n this paper we consider polynomial cointegrating relationships among
stationary processes with long range dependence. We express the regression
functions in terms of Hermite polynomials and we consider a form of spectral
regression around frequency zero. For these estimates, we establish consistency
by means of a more general result on continuously averaged estimates of the
spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200
Dipole anisotropies of IRAS galaxies and the contribution of a large-scale local void
Recent observations of dipole anisotropies show that the velocity of the
Local Group (\Vec v_{\rm G}) induced by the clustering of IRAS galax ies has
an amplitude and direction similar to those of the velocity of Cosmic Microwave
Background dipole anisotropy (\Vec v_{\rm CMB}), but the difference | \Vec
v_{\rm G} - \Vec v_{\rm CMB} | is still km/s, which is about 28% of
|\Vec v_{\rm CMB} |. Here we consider the possibility that the origin of this
difference comes from a hypothetical large-scale local void, with which we can
account for the accelerating behavior of type Ia supernovae due to the spatial
inhomogeneity of the Hubble constant without dark energies and derive the
constraint to the model parameters of the local void. It is found as a result
that the distance between the Local Group and the center of the void must be
Mpc, whose accurate value depends on the background model
parameters.Comment: 13 pages, 1 figure, to be published in ApJ 584, No.2 (2003
A 128K-bit CCD buffer memory system
A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications
Emission lines and optical continuum in low-luminosity radio galaxies
We present spectroscopic observations of a complete sub-sample of 13
low-luminosity radio galaxies selected from the 2Jy sample. The underlying
continuum in these sources is carefully modelled in order to make a much-needed
comparison between the emission line and continuum properties of FRIs with
those of other classes of radio sources. We find that 5 galaxies in the sample
show a measurable UV excess: 2 of the these sources are BL Lacs and in the
remaining 3 galaxies we argue that the most likely contributor to the UV excess
is a young stellar component. Excluding the BL Lacs, we therefore find that
\~30% of the sample show evidence for young stars, which is similar to the
results obtained for higher luminosity samples. We compare our results with
far-infrared measurements in order to investigate the far-infrared-starburst
link. The nature of the optical-radio correlations is investigated in light of
this new available data and, in contrast to previous studies, we find that the
FRI sources follow the correlations with a similar slope to that found for the
FRIIs. Finally, we compare the luminosity of the emission lines in the FRI and
BL Lac sources and find a significant difference in the [OIII] line
luminosities of the two groups. Our results are discussed in the context of the
unified schemes.Comment: 18 pages, 31 figures, MNRAS in press, (all enquiries to Clive
Tadhunter ([email protected])
Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR)
Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR
Review of current interest and research in water hyacinth-based wastewater treatment
The status of activity in the user community for water hyacinth-based wastewater treatment was evaluated. The principal technique used was that of interviewing people who either (1) were known to be engaged in hyacinth research or development or (2) had made inquiry to NASA about hyacinth systems. About 40 non-research organizations and a similar number of research organizations were contacted. As a result of the interviews and a review of the relevant literature, it was concluded that hyacinth systems have the potential for providing a lower cost way for small cities to meet increasingly stringent effluent requirements. A limited amount of full-scale demonstration of hyacinth systems has been carried out during the past two years, but the yield of design data has been small. Several organizations are currently planning construction of experimental full-scale hyacinth-based wastewater treatment systems during 1977-1978
- …
