34 research outputs found

    Spacelike localization of long-range fields in a model of asymptotic electrodynamics

    Get PDF
    A previously proposed algebra of asymptotic fields in quantum electrodynamics is formulated as a net of algebras localized in regions which in general have unbounded spacelike extension. Electromagnetic fields may be localized in `symmetrical spacelike cones', but there are strong indications this is not possible in the present model for charged fields, which have tails extending in all space directions. Nevertheless, products of appropriately `dressed' fermion fields (with compensating charges) yield bi-localized observables.Comment: 29 pages, accepted for publication in Annales Henri Poincar\'

    Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory

    Full text link
    On the basis of a thorough discussion of the Batalin-Vilkovisky formalism for classical field theory presented in our previous publication, we construct in this paper the Batalin-Vilkovisky complex in perturbatively renormalized quantum field theory. The crucial technical ingredient is a proof that the renormalized time-ordered product is equivalent to the pointwise product of classical field theory. The renormalized Batalin-Vilkovisky algebra is then the classical algebra but written in terms of the time-ordered product, together with an operator which replaces the ill defined graded Laplacian of the unrenormalized theory. We identify it with the anomaly term of the anomalous Master Ward Identity of Brennecke and D\"utsch. Contrary to other approaches we do not refer to the path integral formalism and do not need to use regularizations in intermediate steps.Comment: 34 page

    A Cohomological Perspective on Algebraic Quantum Field Theory

    Get PDF
    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory

    Cosmological perturbation theory and quantum gravity

    Get PDF
    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well

    Quantum Reference Frames, Measurement Schemes and the Type of Local Algebras in Quantum Field Theory

    Get PDF
    \ua9 The Author(s) 2024. We develop an operational framework, combining relativistic quantum measurement theory with quantum reference frames (QRFs), in which local measurements of a quantum field on a background with symmetries are performed relative to a QRF. This yields a joint algebra of quantum-field and reference-frame observables that is invariant under the natural action of the group of spacetime isometries. For the appropriate class of quantum reference frames, this algebra is parameterised in terms of crossed products. Provided that the quantum field has good thermal properties (expressed by the existence of a KMS state at some nonzero temperature), one can use modular theory to show that the invariant algebra admits a semifinite trace. If furthermore the quantum reference frame has good thermal behaviour (expressed in terms of the properties of a KMS weight) at the same temperature, this trace is finite. We give precise conditions for the invariant algebra of physical observables to be a type II1 factor. Our results build upon recent work of Chandrasekaran et al. (J High Energy Phys 2023(2): 1–56, 2023. arXiv:2206.10780), providing both a significant mathematical generalisation of these findings and a refined operational understanding of their model

    The Quantum Sine-Gordon model in perturbative AQFT

    Get PDF
    We study the Sine-Gordon model with Minkowski signature in the framework of perturbative algebraic quantum field theory. We calculate the vertex operator algebra braiding property. We prove that in the finite regime of the model, the expectation value—with respect to the vacuum or a Hadamard state—of the Epstein Glaser S-matrix and the interacting current or the field respectively converge, both given as formal power series

    Properties of field functionals and characterization of local functionals

    Get PDF
    Functionals (i.e. functions of functions) are widely used in quantum field theory and solid-state physics. In this paper, functionals are given a rigorous mathematical framework and their main properties are described. The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential (Bastiani differential) are discussed. The relation between the multiple derivatives of a functional and the corresponding distributions is described in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying on a recent work by Yoann Dabrowski, several spaces of functionals are furnished with a complete and nuclear topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous meaning. A new concept of local functionals is proposed and two characterizations of them are given: the first one uses the additivity (or Hammerstein) property, the second one is a variant of Peetre's theorem. Finally, the first step of a cohomological approach to quantum field theory is carried out by proving a global Poincar\'e lemma and defining multi-vector fields and graded functionals within our framework.Comment: 32 pages, no figur

    C*-algebraic approach to interacting quantum field theory: inclusion of Fermi fields

    Get PDF
    We extend the C*-algebraic approach to interacting quantum field theory, proposed recently by Detlev Buchholz and one of us (KF) to Fermi fields. The crucial feature of our approach is the use of auxiliary Grassmann variables in a functorial way
    corecore