244 research outputs found
Passive sorting of asteroid material using solar radiation pressure
Understanding dust dynamics in asteroid environments is key for future science missions to asteroids and, in the long-term, also for asteroid exploitation. This paper proposes a novel way of manipulating asteroid material by means of solar radiation pressure (SRP). We envisage a method for passively sorting material as a function of its grain size where SRP is used as a passive in-situ ‘mass spec-trometer’. The analysis shows that this novel method allows an effective sorting of regolith material. This has immediate applications for sample return, and in-situ resource utilisation to separate different regolith particle sizes
Three-Body Dynamics and Self-Powering of an Electrodynamic Tether in a Plasmasphere
The dynamics of an electrodynamic tether in a three-body gravitational environment are investigated. In the classical two-body scenario the extraction of power is at the expense of orbital kinetic energy. As a result of power extraction, an electrodynamic tether satellite system loses altitude and deorbits. This concept has been proposed and well investigated in the past, for example for orbital debris mitigation and spent stages reentry. On the other hand, in the three-body scenario an electrodynamic tether can be placed in an equilibrium position fixed with respect to the two primary bodies without deorbiting, and at the same time generate power for onboard use. The appearance of new equilibrium positions in the perturbed three-body problem allow this to happen as the electrical power is extracted at the expenses of the plasma corotating with the primary body. Fundamental differences between the classical twobody dynamics and the new phenomena appearing in the circular restricted three-body problem perturbed by the electrodynamic force of the electrodynamic tether are shown in the paper. An interesting application of an electrodynamic tether placed in the Jupiter plasma torus is then considered, in which the electrodynamic tether generates useful electrical power of about 1 kW with a 20-km-long electrodynamic tether from the environmental plasma without losing orbital energy
Recommended from our members
Near-Earth asteroid sample return missions
The rate of discovery of new NEAs and the success of D-S 1 and NEAR-Shoemaker, suggest that sample return from NEAs is now technically feasible. Here we present a summary of a recent workshop on the topic
Low thrust propulsion in a coplanar circular restricted four body problem
This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the solar system. Following this, the model incorporates `near term' low-thrust propulsion capabilities to generate surfaces of articial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identied. Throughout the analysis the Sun-Jupiter-Asteroid-Spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L4. It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1:5 10􀀀4N for a 1000kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the 624-Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplied CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-624 Hektor-Spacecraft is undertaken, which tests the validity of the stability analysis of the simplied model
Boundedness of Spacecraft Hovering Under Dead-Band Control in Time-Invariant Systems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76297/1/AIAA-20179-984.pd
Deviation of the Shape of Bennu from Rotational Figures of Stability
Images of asteroid (101955) Bennu acquired by the OSIRIS-REx mission reveal a rocky world covered in rubble; Shape deviates from hydrostatic surface; Internal friction and/or cohesion even if no tensile strength; Understanding the deviation of the surface from idealized shape may help constrain mechanical properties of the interior; Geologic evolution of Bennu is driven by downslope migration of surface material and rubble; May be caused by YORP-induced spin-up, re-accumulation, impact-induced seismic shaking, thermal stresses, or tidal disruption by close encounters to larger bodies
Craters, Boulders and Regolith of (101955) Bennu Indicative of an Old and Dynamic Surface
Small, kilometre-sized near-Earth asteroids are expected to have young and frequently refreshed surfaces for two reasons: collisional disruptions are frequent in the main asteroid belt where they originate, and thermal or tidal processes act on them once they become near-Earth asteroids. Here we present early measurements of numerous large candidate impact craters on near-Earth asteroid (101955) Bennu by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer) mission, which indicate a surface that is between 100 million and 1 billion years old, predating Bennu's expected duration as a near-Earth asteroid. We also observe many fractured boulders, the morphology of which suggests an influence of impact or thermal processes over a considerable amount of time since the boulders were exposed at the surface. However, the surface also shows signs of more recent mass movement: clusters of boulders at topographic lows, a deficiency of small craters and infill of large craters. The oldest features likely record events from Bennu's time in the main asteroid belt
Association of optical tracklets from a geosynchronous belt survey via the direct Bayesian admissible region approach
The direct Bayesian admissible region approach is an a priori state free measurement association and initial orbit determination technique for optical tracks. In this paper, we test a hybrid approach that appends a least squares estimator to the direct Bayesian method on measurements taken at the Zimmerwald Observatory of the Astronomical Institute at the University of Bern. Over half of the association pairs agreed with conventional geometric track correlation and least squares techniques. The remaining pairs cast light on the fundamental limits of conducting tracklet association based solely on dynamical and geometrical information
- …
