392 research outputs found
Measuring Temperature Gradients over Nanometer Length Scales
When a quantum dot is subjected to a thermal gradient, the temperature of
electrons entering the dot can be determined from the dot's thermocurrent if
the conductance spectrum and background temperature are known. We demonstrate
this technique by measuring the temperature difference across a 15 nm quantum
dot embedded in a nanowire. This technique can be used when the dot's energy
states are separated by many kT and will enable future quantitative
investigations of electron-phonon interaction, nonlinear thermoelectric
effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure
Surface Transitions for Confined Associating Mixtures
Thin films of binary mixtures that interact through isotropic forces and
directionally specific "hydrogen bonding" are considered through Monte Carlo
simulations. We show, in good agreement with experiment, that the single phase
of these mixtures can be stabilized or destabilized on confinement. These
results resolve a long standing controversy, since previous theories suggest
that confinement only stabilizes the single phase of fluid mixtures.Comment: LaTeX document, documentstyle[aps,preprint]{revtex}, psfig.sty,
bibtex, 13 pages, 4 figure
Out-of-Equilibrium Admittance of Single Electron Box Under Strong Coulomb Blockade
We study admittance and energy dissipation in an out-of-equlibrium single
electron box. The system consists of a small metallic island coupled to a
massive reservoir via single tunneling junction. The potential of electrons in
the island is controlled by an additional gate electrode. The energy
dissipation is caused by an AC gate voltage. The case of a strong Coulomb
blockade is considered. We focus on the regime when electron coherence can be
neglected but quantum fluctuations of charge are strong due to Coulomb
interaction. We obtain the admittance under the specified conditions. It turns
out that the energy dissipation rate can be expressed via charge relaxation
resistance and renormalized gate capacitance even out of equilibrium. We
suggest the admittance as a tool for a measurement of the bosonic distribution
corresponding collective excitations in the system
Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves
Individual self-assembled Quantum Dots and Quantum Posts are studied under
the influence of a surface acoustic wave. In optical experiments we observe an
acoustically induced switching of the occupancy of the nanostructures along
with an overall increase of the emission intensity. For Quantum Posts,
switching occurs continuously from predominantely charged excitons (dissimilar
number of electrons and holes) to neutral excitons (same number of electrons
and holes) and is independent on whether the surface acoustic wave amplitude is
increased or decreased. For quantum dots, switching is non-monotonic and shows
a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of
positively charged and neutral excitons is observed at high surface acoustic
wave amplitudes. These findings are explained by carrier trapping and
localization in the thin and disordered two-dimensional wetting layer on top of
which Quantum Dots nucleate. This limitation can be overcome for Quantum Posts
where acoustically induced charge transport is highly efficient in a wide
lateral Matrix-Quantum Well.Comment: 11 pages, 5 figure
Harmonic Sums and Mellin Transforms up to two-loop Order
A systematic study is performed on the finite harmonic sums up to level four.
These sums form the general basis for the Mellin transforms of all individual
functions of the momentum fraction emerging in the quantities of
massless QED and QCD up to two--loop order, as the unpolarized and polarized
splitting functions, coefficient functions, and hard scattering cross sections
for space and time-like momentum transfer. The finite harmonic sums are
calculated explicitly in the linear representation. Algebraic relations
connecting these sums are derived to obtain representations based on a reduced
set of basic functions. The Mellin transforms of all the corresponding Nielsen
functions are calculated.Comment: 44 pages Latex, contract number adde
Surface and capillary transitions in an associating binary mixture model
We investigate the phase diagram of a two-component associating fluid mixture
in the presence of selectively adsorbing substrates. The mixture is
characterized by a bulk phase diagram which displays peculiar features such as
closed loops of immiscibility. The presence of the substrates may interfere the
physical mechanism involved in the appearance of these phase diagrams, leading
to an enhanced tendency to phase separate below the lower critical solution
point. Three different cases are considered: a planar solid surface in contact
with a bulk fluid, while the other two represent two models of porous systems,
namely a slit and an array on infinitely long parallel cylinders. We confirm
that surface transitions, as well as capillary transitions for a large
area/volume ratio, are stabilized in the one-phase region. Applicability of our
results to experiments reported in the literature is discussed.Comment: 12 two-column pages, 12 figures, accepted for publication in Physical
Review E; corrected versio
Electrical and thermoelectrical transport in Dirac fermions through a quantum dot
We investigate the conductance and thermopower of massless Dirac fermions
through a quantum dot using a pseudogap Anderson model in the non-crossing
approximation. When the Fermi level is at the Dirac point, the conductance has
a cusp where the thermopower changes its sign. When the Fermi level is away
from the Dirac point, the Kondo temperature illustrates a quantum impurity
transition between an asymmetric strong coupling Kondo state and a localized
moment state. The conductance shows a peak near this transition and reaches the
unitary limit at low temperatures. The magnitude of the thermopower exceeds
, and the thermoelectric figure of merit exceeds unity.Comment: 5 pages, 4 figure
Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au
We report the observation and physical characterization of the possible dwarf planet 2014. UZ224 ("DeeDee"), a dynamically detached trans-Neptunian object discovered at 92 au. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an r-band magnitude of 23.0 in data collected by the Dark Energy Survey between 2014 and 2016. Its 1140 year orbit has (a, e, i)=(109 au, 0.65, 26 degrees.8). It will reach its perihelion distance of 38 au in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak interactions with Neptune. We have performed follow-up observations with ALMA, using 3 hr of on-source integration time to measure the object's thermal emission in the Rayleigh-Jeans tail. The signal is detected at 7 sigma significance, from which we determine a V-band albedo of 13.1(-2.4)(+3.3)(stat)sys percent and a diameter of 635(-61)(+57)(stat)(-39)(+32)(sys) km assuming a spherical body with uniform surface properties
Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation
Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA), which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation. © 2014 Keyel et al
- …
