21,207 research outputs found
A laboratory study of the subjective response to helicopter blade-slap noise
The test stimuli recorded during a recent field study consisted of 16 sounds, each presented at 4 peak noise levels. Two helicopters and a fixed-wing aircraft were used. The impulsive characteristics of one helicopter were varied by operating at different rotor speeds, whereas the other helicopter, the noise of which was dominated by the tail rotor, displayed little variation in blade-slap noise. Thirty-two subjects made noisiness judgments on a continuous, 11 point, numerical scale. Preliminary results indicate that proposed impulsiveness corrections provide no significant improvement in the noisiness predictive ability of Effective Perceived Noise Levels (EPNL). For equal EPNL, the two categories of helicopter stimuli, one of which was far more impulsive than the other, showed no difference in judged noisiness. Examination of the physical characteristics of the sounds presented in the laboratory highlighted the difficulty of reproducing acoustical signals with high-crest factors
Detection of low frequency impulsive noise from large wind turbine generators
The thresholds of detection of low frequency, impulsive wind turbine sounds in the presence of background noise were examined. Seven wind turbine sounds, six of which were synthesized, were used in conjunction with three background noise conditions; quiet, 35, and 45 dB(A). The results indicate that thresholds of detection are predictable based on assumed characteristics of the auditory system. The synthesized wind turbine sounds were found to adequately represent a real recording
Status and capabilities of sonic boom simulators
The current status and capabilities of sonic boom simulators which might be used in future studies of the effects of sonic boom on people, animals, or structures is summarized. The list of candidate simulators is based on a literature search which was confined to the United States and Canada. Some of the simulators are fully operational, others could be made operational with a modest investment, and still others would require a major investment. For the sake of the completeness, some simulators which were the subject of a previous review, but which no longer exist, are also included herein
Sound propagation studies for a large horizontal axis wind turbine
Systematic noise measurements in three directions with respect to the wind vector, over a range of distances to 1050 m, over a range of frequencies from 8 Hz to 2000 Hz, and for a stable wind turbine noise source (WTS-4) in windy conditions (V = 9.4 to 13.0 m/s) are presented. At frequencies above 63 Hz in the downwind and crosswind directions the sound pressure levels decay with distance according to predictions based on atmospheric absorption and spherical spreading, assuming no excess attenuation due to ground effects. In the upwind direction there is excess attenuation due to an acoustic shadow zone. The assumption of a distributed noise source leads to better noise estimates in the upwind direction. For very low frequencies 8 to 16 Hz no excess attenuation was observed in the upwind direction at distances up to 1050 m and a sound pressure level decay rate of approximately 3 dB per doubling of distance was observed in the downwind direction
Wind turbine acoustic standards
A program is being conducted to develop noise standards for wind turbines which minimize annoyance and which can be used to design specifications. The approach consists of presenting wind turbine noise stimuli to test subjects in a laboratory listening chamber. The responses of the subjects are recorded for a range of stimuli which encompass the designs, operating conditions, and ambient noise levels of current and future installations. Results to date have established the threshold of detectability for a range of impulsive stimuli of the type associated with blade/tower wake interactions. The status of the ongoing psychoacoustic tests, the subjective data, and the approach to the development of acoustic criteria/standards are described
Fluid thermal actuator
Operational characteristics of actuator for spacecraft thermal control syste
Water utilization, evapotranspiration and soil moisture monitoring in the south east region of south Australia
There are no author-identified significant results in this report
Shortest Path versus Multi-Hub Routing in Networks with Uncertain Demand
We study a class of robust network design problems motivated by the need to
scale core networks to meet increasingly dynamic capacity demands. Past work
has focused on designing the network to support all hose matrices (all matrices
not exceeding marginal bounds at the nodes). This model may be too conservative
if additional information on traffic patterns is available. Another extreme is
the fixed demand model, where one designs the network to support peak
point-to-point demands. We introduce a capped hose model to explore a broader
range of traffic matrices which includes the above two as special cases. It is
known that optimal designs for the hose model are always determined by
single-hub routing, and for the fixed- demand model are based on shortest-path
routing. We shed light on the wider space of capped hose matrices in order to
see which traffic models are more shortest path-like as opposed to hub-like. To
address the space in between, we use hierarchical multi-hub routing templates,
a generalization of hub and tree routing. In particular, we show that by adding
peak capacities into the hose model, the single-hub tree-routing template is no
longer cost-effective. This initiates the study of a class of robust network
design (RND) problems restricted to these templates. Our empirical analysis is
based on a heuristic for this new hierarchical RND problem. We also propose
that it is possible to define a routing indicator that accounts for the
strengths of the marginals and peak demands and use this information to choose
the appropriate routing template. We benchmark our approach against other
well-known routing templates, using representative carrier networks and a
variety of different capped hose traffic demands, parameterized by the relative
importance of their marginals as opposed to their point-to-point peak demands
Shock Theory of a Bubbly Liquid in a Deformable Tube
Shock propagation through a bubbly liquid filled in a deformable cylindrical tube is considered. Quasi-one-dimensional
bubbly flow equations that include fluid-structure interaction are formulated, and the steady shock
relations are derived. Experiments are conducted in which a free-falling steel projectile impacts the top of an air/water
mixture in a polycarbonate tube, and stress waves in the tube material are measured. The experimental data indicate
that the linear theory cannot properly predict the propagation speeds of shock waves in mixture-filled tubes; the shock
theory is found to more accurately estimate the measured wave speeds
- …
