798 research outputs found
Domain Wall Pinning by Step-Like Thickness Change in Magnetic Thin Film
A thin-film element with a steplike thickness change has been fabricated to investigate experimentally a pinning effect of domain walls by a shape control of thin-film devices. Using a Kerr microscope, domain observation has been done to measure pinning characteristics of the element. It has been shown that 40% steplike thickness change of the film thickness can realize a wall pinning, and a pinning field of 2.53 Oe is obtained. The pinning field increases with increasing steplike thickness change ratio
Miniaturization of High-Frequency Carrier-Type Thin-Film Magnetic Field Sensor Using Laminated Film
We examined a laminated high-frequency carrier-type thin-film magnetic field sensor that consists of CoNbZr soft magnetic films with Nb nonmagnetic conductive interlayer. The lamination can change domain structure of the sensor and obtain high sensitivity. An impedance change of 6 /spl Omega/ and a gain of 43 k/spl Omega//T was achieved when the length of the laminated sensor was 1 mm. The gain is four times larger than that of a monolayer sensor
Magnetic domain observation of hydrogenation disproportionation desorption recombination processed Nd-Fe-B powder with a high-resolution Kerr microscope using ultraviolet light
A Kerr microscope that uses ultraviolet (UV) light for high-resolution domain observation was built, and the domain structure and magnetization process of hydrogenation disproportionation desorption recombination (HDDR) powder were examined. The UV Kerr microscope could observe nanometer-sized domain patterns. Applying a dc field of 1.0 kOe to HDDR powder at a desorption recombination (DR) time of 12 min produced abrupt wall motion. The pinning force exerted by the grain boundaries is inadequate for producing high coercivity because the Nd-rich phase layers along these boundaries are absent at a DR time of 12 min. For HDDR powder at a DR time greater than 14 min, changing the magnetic field by up to 1.0 kOe produced no observable wall motion. It follows that the high coercivity of HDDR powder is due to domain wall pinning at the grain boundaries
Renal pericytes: regulators of medullary blood flow
Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla
London equation studies of thin-film superconductors with a triangular antidot lattice
We report on a study of vortex pinning in nanoscale antidot defect arrays in
the context of the London Theory. Using a wire network model, we discretize the
array with a fine mesh, thereby providing a detailed treatment of pinning
phenomena. The use of a fine grid has enabled us to examine both circular and
elongated defects, patterned in the form of a rhombus. The latter display
pinning characteristics superior to circular defects constructed with the
similar area. We calculate pinning potentials for defects containing zero and
single quanta, and we obtain a pinning phase diagram for the second matching
field, .Comment: 10 pages and 14 figure
Temperature dependence and mechanisms for vortex pinning by periodic arrays of Ni dots in Nb films
Pinning interactions between superconducting vortices in Nb and magnetic Ni
dots were studied as a function of current and temperature to clarify the
nature of pinning mechanisms. A strong current dependence is found for a square
array of dots, with a temperature dependent optimum current for the observation
of periodic pinning, that decreases with temperature as (1-T/Tc)3/2. This same
temperature dependence is found for the critical current at the first matching
field with a rectangular array of dots. The analysis of these results allows to
narrow the possible pinning mechanisms to a combination of two: the interaction
between the vortex and the magnetic moment of the dot and the proximity effect.
Moreover, for the rectangular dot array, the temperature dependence of the
crossover between the low field regime with a rectangular vortex lattice to the
high field regime with a square configuration has been studied. It is found
that the crossover field increases with decreasing temperature. This dependence
indicates a change in the balance between elastic and pinning energies,
associated with dynamical effects of the vortex lattice in the high field
range.Comment: 12 text pages (revtex), 6 figures (1st jpeg, 2nd-6th postscript)
accepted in Physical Review
Expanding the clinical phenotype of IARS2-related mitochondrial disease.
BACKGROUND: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. METHODS: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. RESULTS: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. CONCLUSIONS: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia
- …
