656 research outputs found
Topological surface transport in epitaxial SnTe thin films grown on Bi₂Te₃
The topological crystalline insulator SnTe has been grown epitaxially on a Bi₂Te₃ buffer layer by molecular beam epitaxy. In a 30-nm-thick SnTe film, p- and n-type carriers are found to coexist, and Shubnikov–de Haas oscillation data suggest that the n-type carriers are Dirac fermions residing on the SnTe (111) surface. This transport observation of the topological surface state in a p-type topological crystalline insulator became possible due to a downward band bending on the free SnTe surface, which appears to be of intrinsic origin
Landau level spectroscopy of surface states in the topological insulator BiSb via magneto-optics
We have performed broad-band zero-field and magneto-infrared spectroscopy of
the three dimensional topological insulator BiSb. The
zero-field results allow us to measure the value of the direct band gap between
the conducting and valence bands. Under applied field in the
Faraday geometry (\emph{k} \emph{H} C1), we measured the presence of
a multitude of Landau level (LL) transitions, all with frequency dependence
. We discuss the ramification of this observation for
the surface and bulk properties of topological insulators.Comment: 7 pages, 8 figures, March Meeting 2011 Abstract: J35.0000
Synchronization of multi-phase oscillators: An Axelrod-inspired model
Inspired by Axelrod's model of culture dissemination, we introduce and
analyze a model for a population of coupled oscillators where different levels
of synchronization can be assimilated to different degrees of cultural
organization. The state of each oscillator is represented by a set of phases,
and the interaction --which occurs between homologous phases-- is weighted by a
decreasing function of the distance between individual states. Both ordered
arrays and random networks are considered. We find that the transition between
synchronization and incoherent behaviour is mediated by a clustering regime
with rich organizational structure, where some of the phases of a given
oscillator can be synchronized to a certain cluster, while its other phases are
synchronized to different clusters.Comment: 6 pages, 5 figure
Topological crystalline insulator states in Pb(1-x)Sn(x)Se
Topological insulators are a novel class of quantum materials in which
time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band
structure result in electronic metallic states on the surfaces of bulk
crystals. These helical states exhibit a Dirac-like energy dispersion across
the bulk bandgap, and they are topologically protected. Recent theoretical
proposals have suggested the existence of topological crystalline insulators, a
novel class of topological insulators in which crystalline symmetry replaces
the role of time-reversal symmetry in topological protection [1,2]. In this
study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a
topological crystalline insulator for x=0.23. Temperature-dependent
magnetotransport measurements and angle-resolved photoelectron spectroscopy
demonstrate that the material undergoes a temperature-driven topological phase
transition from a trivial insulator to a topological crystalline insulator.
These experimental findings add a new class to the family of topological
insulators. We expect these results to be the beginning of both a considerable
body of additional research on topological crystalline insulators as well as
detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and
supplementary information (5 pages, 8 figures
Quantum magneto-optics of graphite family
The optical conductivity of graphene, bilayer graphene, and graphite in
quantizing magnetic fields is studied. Both dynamical conductivities,
longitudinal and Hall's, are analytically evaluated. The conductivity peaks are
explained in terms of electron transitions. We have shown that trigonal warping
can be considered within the perturbation theory for strong magnetic fields
larger than 1 T and in the semiclassical approach for weak fields when the
Fermi energy is much larger than the cyclotron frequency. The main optical
transitions obey the selection rule with \Deltan = 1 for the Landau number n,
however the \Deltan = 2 transitions due to the trigonal warping are also
possible. The Faraday/Kerr rotation and light transmission/reflection in the
quantizing magnetic fields are calculated. Parameters of the
Slonczewski-Weiss-McClure model are used in the fit taking into account the
previous dHvA measurements and correcting some of them for the case of strong
magnetic fields.Comment: 28 pages, 12 figures. arXiv admin note: text overlap with
arXiv:1106.340
Introduction to the Judgement, Big Data-Analytics and Decision-making Minitrack
2021 is the first year that the Judgement, Big Data-Analytics and Decision-making mini-track has been offered. The track's objective is to monitor and advance our knowledge of the convergent technologies of Big Data and analytics and their role in augmenting knowledge for better management decision-making. The track attracted seven submissions of which five were accepted. The papers form a diverse group, offering case studies of big data analytics projects and critical analysis of various factors that impact the successful or unsuccessful use of data/analytics in organizational settings.falseMaui, Hawaii, United States of Americ
Planar Hall effect from the surface of topological insulators
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films by tuning the Fermi levels of both top and bottom surfaces. Here we report our discovery of a novel planar Hall effect (PHE) from the TI surface, which results from a hitherto-unknown resistivity anisotropy induced by an in-plane magnetic field. This effect is observed in dual-gated devices of bulk-insulating Bi2−x Sb x Te3 thin films, where the field-induced anisotropy presents a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point. The origin of PHE is the peculiar time-reversal-breaking effect of an in-plane magnetic field, which anisotropically lifts the protection of surface Dirac fermions from backscattering. The observed PHE provides a useful tool to analyze and manipulate the topological protection of the TI surface
Josephson supercurrent through a topological insulator surface state
Topological insulators are characterized by an insulating bulk with a finite
band gap and conducting edge or surface states, where charge carriers are
protected against backscattering. These states give rise to the quantum spin
Hall effect without an external magnetic field, where electrons with opposite
spins have opposite momentum at a given edge. The surface energy spectrum of a
threedimensional topological insulator is made up by an odd number of Dirac
cones with the spin locked to the momentum. The long-sought yet elusive
Majorana fermion is predicted to arise from a combination of a superconductor
and a topological insulator. An essential step in the hunt for this emergent
particle is the unequivocal observation of supercurrent in a topological phase.
Here, we present the first measurement of a Josephson supercurrent through a
topological insulator. Direct evidence for Josephson supercurrents in
superconductor (Nb) - topological insulator (Bi2Te3) - superconductor e-beam
fabricated junctions is provided by the observation of clear Shapiro steps
under microwave irradiation, and a Fraunhofer-type dependence of the critical
current on magnetic field. The dependence of the critical current on
temperature and length shows that the junctions are in the ballistic limit.
Shubnikov-de Haas oscillations in magnetic fields up to 30 T reveal a
topologically non-trivial two-dimensional surface state. We argue that the
ballistic Josephson current is hosted by this surface state despite the fact
that the normal state transport is dominated by diffusive bulk conductivity.
The lateral Nb-Bi2Te3-Nb junctions hence provide prospects for the realization
of devices supporting Majorana fermions
- …
