2,032 research outputs found
Geologic interpretation of Skylab photographs
There are no author-identified significant results in this report
Testing for Budget Constraint Effects in a National Advisory Referendum Survey on the Kyoto Protocol
In contrast to providing standard reminders about remembering household budgets, does asking survey respondents about their discretionary income and its use affect their voting responses in a national advisory referendum survey? We explore this question using U.S. household data from a unique set of multi-mode random samples (telephone and Internet surveys), and an advisory referendum concerning the Kyoto Protocol. The contingent valuation method is applied to estimate household willingness to pay (WTP) for a split-sample treatment: respondents who only received a standard reminder of household budgets (control group) versus respondents who received two mental accounting-type questions on discretionary income and its uses (treatment group). Results indicate that the treatment significantly influences voting responses and lowers estimated household WTP.budget constraint, contingent valuation, Kyoto Protocol, mental accounts, referendum, Environmental Economics and Policy,
Exploring the Beta Model Using Proportional Budget Information in a Contingent Valuation Study
Using a set of random telephone and Internet (web-based) survey samples for a national advisory referendum, we implement Beta models to handle proportional budget information, and allow for consistency in modeling assumptions and the calculation of estimated willingness to pay (WTP). Results indicate significant budget constraint effects and demonstrate the potential for Beta models in handling mental-accounting type information.Beta model
Heat flux operator, current conservation and the formal Fourier's law
By revisiting previous definitions of the heat current operator, we show that
one can define a heat current operator that satisfies the continuity equation
for a general Hamiltonian in one dimension. This expression is useful for
studying electronic, phononic and photonic energy flow in linear systems and in
hybrid structures. The definition allows us to deduce the necessary conditions
that result in current conservation for general-statistics systems. The
discrete form of the Fourier's Law of heat conduction naturally emerges in the
present definition
Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data
The author has identified the following significant results. Skylab photographs are superior to ERTS images for photogeologic interpretation, primarily because of improved resolution. Lithologic contacts can be detected consistently better on Skylab S190A photos than on ERTS images. Color photos are best; red and green band photos are somewhat better than color-infrared photos; infrared band photos are worst. All major geologic structures can be recognized on Skylab imagery. Large folds, even those with very gentle flexures, can be mapped accurately and with confidence. Bedding attitudes of only a few degrees are recognized; vertical exaggeration factor is about 2.5X. Mineral deposits in central Colorado may be indicated on Skylab photos by lineaments and color anomalies, but positive identification of these features is not possible. S190A stereo color photography is adequate for defining drainage divides that in turn define the boundaries and distribution of ground water recharge and discharge areas within a basin
Effective thermodynamics of strongly coupled qubits
Interactions between a quantum system and its environment at low temperatures
can lead to violations of thermal laws for the system. The source of these
violations is the entanglement between system and environment, which prevents
the system from entering into a thermal state. On the other hand, for two-state
systems, we show that one can define an effective temperature, placing the
system into a `pseudo-thermal' state where effective thermal laws are upheld.
We then numerically explore these assertions for an n-state system inspired by
the spin-boson environment.Comment: 9 pages, 3 figure
The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature vascular differentiation during replication stress
A sessile lifestyle forces plants to respond promptly to factors that affect their genomic integrity. Therefore, plants have developed checkpoint mechanisms to arrest cell cycle progression upon the occurrence of DNA stress, allowing the DNA to be repaired before onset of division. Previously, the WEE1 kinase had been demonstrated to be essential for delaying progression through the cell cycle in the presence of replication-inhibitory drugs, such as hydroxyurea. To understand the severe growth arrest of WEE1-deficient plants treated with hydroxyurea, a transcriptomics analysis was performed, indicating prolonged S-phase duration. A role for WEE1 during S phase was substantiated by its specific accumulation in replicating nuclei that suffered from DNA stress. Besides an extended replication phase, WEE1 knockout plants accumulated dead cells that were associated with premature vascular differentiation. Correspondingly, plants without functional WEE1 ectopically expressed the vascular differentiation marker VND7, and their vascular development was aberrant. We conclude that the growth arrest of WEE1-deficient plants is due to an extended cell cycle duration in combination with a premature onset of vascular cell differentiation. The latter implies that the plant WEE1 kinase acquired an indirect developmental function that is important for meristem maintenance upon replication stress
Mutual information between geomagnetic indices and the solar wind as seen by WIND : implications for propagation time estimates
The determination of delay times of solar wind conditions at the sunward libration point to effects on Earth is investigated using mutual information. This measures the amount of information shared between two timeseries. We consider the mutual information content of solar wind observations, from WIND, and the geomagnetic indices. The success of five commonly used schemes for estimating interplanetary propagation times is examined. Propagation assuming a fixed plane normal at 45 degrees to the GSE x-axis (i.e. the Parker Spiral estimate) is found to give optimal mutual information. The mutual information depends on the point in space chosen as the target for the propagation estimate, and we find that it is maximized by choosing a point in the nightside rather than dayside magnetosphere. In addition, we employ recurrence plot analysis to visualize contributions to the mutual information, this suggests that it appears on timescales of hours rather than minutes
- …
