100,844 research outputs found

    CP Violation from 5-dimensional QED

    Full text link
    It has been shown that QED in (1+4)-dimensional space-time, with the fifth dimension compactified on a circle, leads to CP violation (CPV). Depending on fermionic boundary conditions, CPV may be either explicit (through the Scherk--Schwarz mechanism), or spontaneous (via the Hosotani mechanism). The fifth component of the gauge field acquires (at the one-loop level) a non-zero vacuum expectation value. In the presence of two fermionic fields, this leads to spontaneous CPV in the case of CP-symmetric boundary conditions. Phenomenological consequences are illustrated by a calculation of the electric dipole moment for the fermionic zero-modes.Comment: 11 pages, 2 figure

    Single-pulse broad-band rotational CARS thermometry of cold N2 gas

    Get PDF
    Coherent anti Stokes Raman scattering (CARS) from the pure rotational Raman lines of N2 was employed to measure the instantaneous (10 nsec) rotational temperature of the gas at room temperature and below. An entire rotational CARS spectrum was generated by a single laser pulse using a broad bandwidth dye laser and was recorded on an optical multichannel analyzer. A best fit temperature obtained for individual experimental spectra by comparison with calculated spectra. Good agreement between CARS temperatures and thermocouple temperatures was observed

    Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys

    Get PDF
    Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.Comment: 6 pages, 8 figure

    Trapping atoms using nanoscale quantum vacuum forces

    Get PDF
    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here, we show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. The trapping scheme takes advantage of the attractive ground state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyze realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.Comment: 13 pages, 4 figure

    Ultimate intrinsic-coercivity samarium-cobalt magnet: An Earth-based feasibility study for space-shuttle missions

    Get PDF
    Techniques for containerless melting and solidification of the samarium-cobalt alloy without excessive oxidation were developed. The rationale for extending these experiments in a weightless environment is also discussed. The effect of oxygen content from 0.15 to 0.63 weight percent and grain size in the range of 2 to 10 micrometers has been examined on arc-plasma-sprayed SmCo5 magnets. Contrary to expectations, the larger grain sizes tended to improve the coercivities. This was attributed to an increase in homogeneity resulting from higher temperature treatments used to produce larger grain size. No significant differences in coercivity were observed on the basis of oxygen content in the range examined. It is expected that more meaningful data on the relationship between oxygen content and coercivity will be seen when the oxygen content can be lowered to less than 0.1 weight percent

    Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene

    Full text link
    The conductance and thermoelectric power (TEP) of graphene is simultaneously measured using microfabricated heater and thermometer electrodes. The sign of the TEP changes across the charge neutrality point as the majority carrier density switches from electron to hole. The gate dependent conductance and TEP exhibit a quantitative agreement with the semiclassical Mott relation. In the quantum Hall regime at high magnetic field, quantized thermopower and Nernst signals are observed and are also in agreement with the generalized Mott relation, except for strong deviations near the charge neutrality point

    Rotational CARS application to simultaneous and multiple-point temperature and concentration determination in a turbulent flow

    Get PDF
    Coherent anti-Stokes Raman scattering (CARS) from the pure rotational Raman lines of N2 is employed to measure the instantaneous (approximately 10 ns) rotational temperature of N2 gas at room temperature and below with good spatial resolution (0.2 x 0.2 x 3.0 cu mm). A broad bandwidth dye laser is used to obtain the entire rotational spectrum from a single laser pulse; the CARS signal is then dispersed by a spectrograph and recorded on an optical multichannel analyzer. A best fit temperature is found in several seconds with the aid of a computer for each experimental spectrum by a least squares comparison with calculated spectra. The model used to calculate the theoretical spectra incorporates the temperature and pressure dependence of the pressure-broadened rotational Raman lines, includes the nonresonant background susceptibility, and assumes that the pump laser has a finite linewidth. Temperatures are fit to experimental spectra recorded over the temperature range of 135 to 296 K, and over the pressure range of .13 to 15.3 atm

    Solubility of Sulfur Dioxide in Sulfuric Acid

    Get PDF
    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA

    Quantitative profiling of BATF family proteins/JUNB/IRF hetero-trimers using Spec-seq

    Get PDF
    Additional file 6. Half site analysis for BATFx-JUNB-IRFx. (A) Single variants from half sites of these oligos in the library were used to generate energy logos. Bolded positions represent the half sites generated in B. (B) Energy logos from Spec-seq results of BATFx-JUNB-IRFx. The Y-axis is negative energy so the preferred sequence is on the top
    corecore