4,165 research outputs found
Topography data harmonisation and uncertainties applying SRTM, laser scanner and cartographic elevation models
International audienceOnly a few studies have attempted to quantify topography-depending water fluxes, to evaluate retention and reservoir capacities and surface run-off paths within large river basins because data availability and data quality are critical issues to face this objective. It becomes most relevant if water balance has to be calculated in large or transboundary river basins. The advance of space based earth observation data offers a solution to this information problem. Therefore, this paper mainly focuses on weaknesses and strengths analyzing topography with SRTM (Shuttle Radar Topography Mission) digital height data and thus provides techniques for their improved application in river network derivation, floodplain analysis, watershed hydrology in large as well as in large river basins (>1000 km2). In the analysis different types of digital elevation models (DEM), terrain models (DTM) and land cover classification data (biotope map, Corine Land Cover 1994) have been used. The DHMs are generated from Airborne Laser Scanning (0.5 m), topographic maps (10.0/50.0 m) and SRTM at 30.0 m and 90.0 m spatial resolution. SRTM digital height models are generated by Synthetic Aperture Radar (SAR) and show a high spatial variance in urban areas, regions of dense vegetation canopy, floodplains and water bodies. As study area serve the Elbe basin (Czech Republic, Germany) with its sub-basins and the Saale river basin (Germany, different federal countries Saxony-Anhalt, Saxony and Thuringia)
Predicate Abstraction for Linked Data Structures
We present Alias Refinement Types (ART), a new approach to the verification
of correctness properties of linked data structures. While there are many
techniques for checking that a heap-manipulating program adheres to its
specification, they often require that the programmer annotate the behavior of
each procedure, for example, in the form of loop invariants and pre- and
post-conditions. Predicate abstraction would be an attractive abstract domain
for performing invariant inference, existing techniques are not able to reason
about the heap with enough precision to verify functional properties of data
structure manipulating programs. In this paper, we propose a technique that
lifts predicate abstraction to the heap by factoring the analysis of data
structures into two orthogonal components: (1) Alias Types, which reason about
the physical shape of heap structures, and (2) Refinement Types, which use
simple predicates from an SMT decidable theory to capture the logical or
semantic properties of the structures. We prove ART sound by translating types
into separation logic assertions, thus translating typing derivations in ART
into separation logic proofs. We evaluate ART by implementing a tool that
performs type inference for an imperative language, and empirically show, using
a suite of data-structure benchmarks, that ART requires only 21% of the
annotations needed by other state-of-the-art verification techniques
Coupled modelling of subsurface water flux for an integrated flood risk management
Flood events cause significant damage not only on the surface but also underground. Infiltration of surface water into soil, flooding through the urban sewer system and, in consequence, rising groundwater are the main causes of subsurface damage. The modelling of flooding events is an important part of flood risk assessment. The processes of subsurface discharge of infiltrated water necessitate coupled modelling tools of both, surface and subsurface water fluxes. Therefore, codes for surface flooding, for discharge in the sewerage system and for groundwater flow were coupled with each other. A coupling software was used to amalgamate the individual programs in terms of mapping between the different model geometries, time synchronization and data exchange. The coupling of the models was realized on <i>two</i> scales in the Saxon capital of Dresden (Germany). As a result of the coupled modelling it could be shown that surface flooding dominates processes of any flood event. Compared to flood simulations without coupled modelling no substantial changes of the surface inundation area could be determined. Regarding sewerage, the comparison between the influx of groundwater into sewerage and the loading due to infiltration by flood water showed infiltration of surface flood water to be the main reason for sewerage overloading. Concurrent rainfalls can intensify the problem. The infiltration of the sewerage system by rising groundwater contributes only marginally to the loading of the sewerage and the distribution of water by sewerage has only local impacts on groundwater rise. However, the localization of risk areas due to rising groundwater requires the consideration of all components of the subsurface water fluxes. The coupled modelling has shown that high groundwater levels are the result of a multi-causal process that occurs before and during the flood event
Geochemistry of lavas from Mohns Ridge, Norwegian-Greenland Sea: implications for melting conditions and magma sources near Jan Mayen
Mohns Ridge lavas between 71 and 72°30′N (∼360 km) have heterogeneous compositions varying between alkali basalts and incompatible-element-depleted tholeiites. On a large scale there is a continuity of incompatible element and isotopic compositions between the alkali basalts from the island Jan Mayen and Mohns Ridge tholeiites. The variation in isotopes suggests a heterogeneous mantle which appears to be tapped preferentially by low degree melts (∼5%) close to Jan Mayen but also shows its signature much further north on Mohns Ridge. Three lava types with different incompatible element compositions [e.g. chondrite-normalized (La/Sm)N2] occur in the area at 72°N and were generated from this heterogeneous mantle. The relatively depleted tholeiitic melts were mixed with a small degree melt from an enriched source. The elements Ba, Rb and K of the enriched melt were probably buffered in the mantle by residual amphibole or phlogopite. That such a residual phase is stable in this region of oceanic mantle suggests both high water contents and low mantle temperatures, at odds with a hotspot origin for Jan Mayen. Instead we suggest that the melting may be induced by the lowered solidus temperature of a “wet” mantle. Mohns MORB (mid ocean ridge basalt) and Jan Mayen area alkali basalts have high contents of Ba and Rb compared to other incompatible elements (e.g. Ba/La >10). These ratios reflect the signature of the mantle source. Ratios of Ce/Pb and Rb/Cs are normal MORB mantle ratios of 25 and 80, respectively, thus the enrichments of Ba and Rb are not indicative of a sedimentary component added to the mantle source but were probably generated by the influence of a metasomatizing fluid, as supported by the presence of hydrous phases during the petrogenesis of the alkali basalts. Geophysical and petrological models suggest that Jan Mayen is not the product of hotspot activity above a mantle plume, and suggest instead that it owes its existence to the unique juxtaposition of a continental fragment, a fracture zone and a spreading axis in this part of the North Atlantic
Enhancing Optical Up-Conversion Through Electrodynamic Coupling with Ancillary Chromophores
In lanthanide-based optical materials, control over the relevant operating characteristics–for example transmission wavelength, phase and quantum efficiency–is generally achieved through the modification of parameters such as dopant/host combination, chromophore concentration and lattice structure. An alternative avenue for the control of optical response is through the introduction of secondary, codoped chromophores. Here, such secondary centers act as mediators, commonly bridging the transfer of energy between primary absorbers of externally sourced optical input and other sites of frequency-converted emission. Utilizing theoretical models based on experimentally feasible, three-dimensional crystal lattice structures; a fully quantized theoretical framework provides insights into the locally modified mechanisms that can be implemented within such systems. This leads to a discussion of how such effects might be deployed to either enhance, or potentially diminish, the efficiency of frequency up-conversion
Perfectionism and achievement goals in young Finnish ice-hockey players aspiring to make the Under-16 national team
Research on perfectionism suggests that is it useful to differentiate between perfectionistic strivings and perfectionistic concerns. Regarding the 2 x 2 achievement goal framework, the usefulness of this differentiation was recently demonstrated in a study with university student athletes (Stoeber, Stoll, Pescheck, & Otto, 2008, Study 2), in which it was found that perfectionistic strivings were associated with mastery-approach and performance-approach goals and perfectionistic concerns with mastery-avoidance, performance-approach, and performance-avoidance goals. Because the study was largely exploratory and only used non-elite athletes, the aim of the present research was to replicate and extend these findings by investigating a sample of 138 young, elite ice-hockey players, while adding further measures of perfectionism and using structural equation modelling (SEM) to confirm the relationships between perfectionistic strivings, perfectionistic concerns,and the 2 x 2 achievement goals. The SEM results showed that, in elite athletes also, perfectionistic strivings are associated with mastery-approach and performance-approach goals, whereas perfectionistic concerns are associated with masteryavoidance,
performance-approach, and performance-avoidance goals. Our findings corroborate the importance of differentiating between perfectionistic strivings and perfectionistic concerns when studying perfectionism in sports, because
only perfectionistic concerns (and not perfectionistic strivings) are associated with maladaptive patterns of achievement goals
Phonon and Elastic Instabilities in MoC and MoN
We present several results related to the instability of MoC and MoN in the
B1 (sodium chloride) structure. These compounds were proposed as potential
superconductors with moderately high transition temperatures. We show that the
elastic instability in B1-structure MoN, demonstrated several years ago,
persists at elevated pressures, thus offering little hope of stabilizing this
material without chemical doping. For MoC, another material for which
stoichiometric fabrication in the B1-structure has not proven possible, we find
that all of the cubic elastic constants are positive, indicating elastic
stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as
well), further illustrating the rich behavior of carbo-nitride materials. We
also present additional electronic structure results for several transition
metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in
the properties of these materials. Deviations from strict electron counting
dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR
Phase Transitions in Warm, Asymmetric Nuclear Matter
A relativistic mean-field model of nuclear matter with arbitrary proton
fraction is studied at finite temperature. An analysis is performed of the
liquid-gas phase transition in a system with two conserved charges (baryon
number and isospin) using the stability conditions on the free energy, the
conservation laws, and Gibbs' criteria for phase equilibrium. For a binary
system with two phases, the coexistence surface (binodal) is two-dimensional.
The Maxwell construction through the phase-separation region is discussed, and
it is shown that the stable configuration can be determined uniquely at every
density. Moreover, because of the greater dimensionality of the binodal
surface, the liquid-gas phase transition is continuous (second order by
Ehrenfest's definition), rather than discontinuous (first order), as in
familiar one-component systems. Using a mean-field equation of state calibrated
to the properties of nuclear matter and finite nuclei, various phase-separation
scenarios are considered. The model is then applied to the liquid-gas phase
transition that may occur in the warm, dilute matter produced in energetic
heavy-ion collisions. In asymmetric matter, instabilities that produce a
liquid-gas phase separation arise from fluctuations in the proton concentration
(chemical instability), rather than from fluctuations in the baryon density
(mechanical instability).Comment: Postscript file, 50 pages including 23 figure
High-Tc Superconductivity and Antiferromagnetism in Multilayered Copper Oxides - A New Paradigm of Superconducting Mechanism -
High-temperature superconductivity (HTSC) in copper oxides emerges on a
layered CuO2 plane when an antiferromagnetic Mott insulator is doped with
mobile hole carriers. We review extensive studies of multilayered copper oxides
by site-selective nuclear magnetic resonance (NMR), which have uncovered the
intrinsic phase diagram of antiferromagnetism (AFM) and HTSC for a
disorder-free CuO2 plane with hole carriers. We present our experimental
findings such as the existence of the AFM metallic state in doped Mott
insulators, the uniformly mixed phase of AFM and HTSC, and the emergence of
d-wave SC with a maximum Tc just outside a critical carrier density, at which
the AFM moment on a CuO2 plane disappears. These results can be accounted for
by the Mott physics based on the t-J model. The superexchange interaction J_in
among spins plays a vital role as a glue for Cooper pairs or mobile
spin-singlet pairs, in contrast to the phonon-mediated attractive interaction
among electrons established in the Bardeen-Cooper-Schrieffer (BCS) theory. We
remark that the attractive interaction for raising the of HTSC up to
temperatures as high as 160 K is the large J_in (~0.12 eV), which binds
electrons of opposite spins to be on neighboring sites, and that there are no
bosonic glues. It is the Coulomb repulsive interaction U(> 6 eV) among Cu-3d
electrons that plays a central role in the physics behind high-Tc phenomena. A
new paradigm of the SC mechanism opens to strongly correlated electron matter.Comment: 20 pages, 25 figures, Special topics "Recent Developments in
Superconductivity" in J. Phys. Soc. Jpn., Published December 26, 201
- …
