19,560 research outputs found

    Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses

    Full text link
    Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields are defined, the potential in which the fields deterministically evolve, and the relative stiffness of the fields themselves. The latter is of particular importance in that physical applications will generally require different relative stiffnesses, but the effect of varying field stiffnesses has not heretofore been studied. In this paper, we explore the complete phase diagram of escape times as they depend on the various problem parameters. In addition to finding a transition in escape rates as the relative stiffness varies, we also observe a critical slowing down of the string method algorithm as criticality is approached.Comment: 16 pages, 10 figure

    High performance microprocessor system for eddy current defectoscope measurement signal processing

    Get PDF
    This article shows principles of development of the eddy current defectoscope data acquisition system. It describes goals of development of this system and main requirements for its characteristics. Also on basis of these requirements possible implementation of the device was suggested

    Intercalation-enhanced electric polarization and chain formation of nano-layered particles

    Full text link
    Microscopy observations show that suspensions of synthetic and natural nano-layered smectite clay particles submitted to a strong external electric field undergo a fast and extended structuring. This structuring results from the interaction between induced electric dipoles, and is only possible for particles with suitable polarization properties. Smectite clay colloids are observed to be particularly suitable, in contrast to similar suspensions of a non-swelling clay. Synchrotron X-ray scattering experiments provide the orientation distributions for the particles. These distributions are understood in terms of competing (i) homogenizing entropy and (ii) interaction between the particles and the local electric field; they show that clay particles polarize along their silica sheet. Furthermore, a change in the platelet separation inside nano-layered particles occurs under application of the electric field, indicating that intercalated ions and water molecules play a role in their electric polarization. The resulting induced dipole is structurally attached to the particle, and this causes particles to reorient and interact, resulting in the observed macroscopic structuring. The macroscopic properties of these electro-rheological smectite suspensions may be tuned by controlling the nature and quantity of the intercalated species, at the nanoscale.Comment: 7 pages, 5 figure

    Attosecond tracking of light absorption and refraction in fullerenes

    Full text link
    The collective response of matter is ubiquitous and widely exploited, e.g. in plasmonic, optical and electronic devices. Here we trace on an attosecond time scale the birth of collective excitations in a finite system and find distinct new features in this regime. Combining quantum chemical computation with quantum kinetic methods we calculate the time-dependent light absorption and refraction in fullerene that serve as indicators for the emergence of collective modes. We explain the numerically calculated novel transient features by an analytical model and point out the relevance for ultra-fast photonic and electronic applications. A scheme is proposed to measure the predicted effects via the emergent attosecond metrology.Comment: 11 pages, 3 figures, accepted in Phys. Rev.

    On surface plasmon polariton wavepacket dynamics in metal-dielectric heterostructures

    Full text link
    The WKB equations for dynamics of the surface plasmon polariton (SPP) wavepacket are studied. The dispersion law for the SPP in the metal-dielectric heterostructure with varying thickness of a perforated dielectric layer is rigorously calculated and investigated using the scattering matrix method. Two channels of the SPP wavepacket optical losses related to the absorption in a metal and to the SPP leakage are analyzed. It is shown that change of the dielectric layer thickness acts on the SPP as an external force leading to evolution of its quasimomentum and to the wavepacket reversal or even to the optical Bloch oscillations (BO). Properties of these phenomena are investigated and discussed. Typical values of the BO amplitude are about tens of microns and the period is around tens or hundreds of femtoseconds.Comment: 12 pages, 5 figure

    Perdeuterated cyanobiphenyl liquid crystals for infrared applications

    Get PDF
    Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications

    Magnetic Reversal in Nanoscopic Ferromagnetic Rings

    Full text link
    We present a theory of magnetization reversal due to thermal fluctuations in thin submicron-scale rings composed of soft magnetic materials. The magnetization in such geometries is more stable against reversal than that in thin needles and other geometries, where sharp ends or edges can initiate nucleation of a reversed state. The 2D ring geometry also allows us to evaluate the effects of nonlocal magnetostatic forces. We find a `phase transition', which should be experimentally observable, between an Arrhenius and a non-Arrhenius activation regime as magnetic field is varied in a ring of fixed size.Comment: RevTeX, 23 pages, 7 figures, to appear in Phys. Rev.

    Precise Charm- and Bottom-Quark Masses: Theoretical and Experimental Uncertainties

    Full text link
    Recent theoretical and experimental improvements in the determination of charm and bottom quark masses are discussed. A new and improved evaluation of the contribution from the gluon condensate to the charm mass determination and a detailed study of potential uncertainties in the continuum cross section for bbˉb\bar b production is presented, together with a study of the parametric uncertainty from the αs\alpha_s-dependence of our results. The final results, mc(3GeV)=986(13)m_c(3 \text{GeV})=986(13) MeV and mb(mb)=4163(16)m_b(m_b)=4163(16) MeV, represent, together with a closely related lattice determination mc(3  GeV)=986(6)m_c(3\;{\rm GeV})=986(6) MeV, the presently most precise determinations of these two fundamental Standard Model parameters. A critical analysis of the theoretical and experimental uncertainties is presented.Comment: 12 pages, presented at Quarks~2010, 16th International Seminar of High Energy Physics, Kolomna, Russia, June 6-12, 2010; v2: references adde
    corecore