8,413 research outputs found
A quasi-time-dependent radiative transfer model of OH104.9+2.4
We investigate the pulsation-phase dependent properties of the circumstellar
dust shell (CDS) of the OH/IR star OH104.9+2.4 based on radiative transfer
modeling (RTM) using the code DUSTY. Our previous study concerning simultaneous
modeling of the spectral energy distribution (SED) and near-infrared (NIR)
visibilities (Riechers et al. 2004) has now been extended by means of a more
detailed analysis of the pulsation-phase dependence of the model parameters of
OH104.9+2.4. In order to investigate the temporal variation in the spatial
structure of the CDS, additional NIR speckle interferometric observations in
the K' band were carried out with the 6 m telescope of the Special
Astrophysical Observatory (SAO). At a wavelength of 2.12 micron the
diffraction-limited resolution of 74 mas was attained. Several key parameters
of our previous best-fitting model had to be adjusted in order to be consistent
with the newly extended amount of observational data. It was found that a
simple rescaling of the bolometric flux F_bol is not sufficient to take the
variability of the source into account, as the change in optical depth over a
full pulsation cycle is rather high. On the other hand, the impact of a change
in effective temperature T_eff on SED and visibility is rather small. However,
observations, as well as models for other AGB stars, show the necessity of
including a variation of T_eff with pulsation phase in the radiative transfer
models. Therefore, our new best-fitting model accounts for these changes.Comment: 7 pages, including 5 postscript figures and 3 tables. Published in
Astronomy and Astrophysics. (v1: accepted version; v2: published version,
minor grammatical changes
Putative spin liquid in the triangle-based iridate BaIrTiO
We report on thermodynamic, magnetization, and muon spin relaxation
measurements of the strong spin-orbit coupled iridate BaIrTiO,
which constitutes a new frustration motif made up a mixture of edge- and
corner-sharing triangles. In spite of strong antiferromagnetic exchange
interaction of the order of 100~K, we find no hint for long-range magnetic
order down to 23 mK. The magnetic specific heat data unveil the -linear and
-squared dependences at low temperatures below 1~K. At the respective
temperatures, the zero-field muon spin relaxation features a persistent spin
dynamics, indicative of unconventional low-energy excitations. A comparison to
the isostructural compound BaRuTiO suggests that a concerted
interplay of compass-like magnetic interactions and frustrated geometry
promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte
Dzyaloshinsky-Moriya Spin Canting in the LTT Phase of La2-x-yEuySrxCuO4
The Cu spin magnetism in La2-x-yEuySrxCuO4 (x<=0.17; y<=0.2) has been studied
by means of magnetization measurements up to 14 T. Our results clearly show
that in the antiferromagnetic phase Dzyaloshinsky-Moriya (DM)superexchange
causes Cu spin canting not only in the LTO phase but also in the LTLO and LTT
phases. In La1.8Eu0.2CuO4 the canted DM-moment is about 50% larger than in pure
La2CuO4 which we attribute to the larger octahedral tilt angle. We also find
clear evidence that the size of the DM-moment does not change significantly at
the structural transition at T_LT from LTO to LTLO and LTT. The most important
change induced by the transition is a significant reduction of the magnetic
coupling between the CuO2 planes. As a consequence, the spin-flip transition of
the canted Cu spins which is observed in the LTO phase for magnetic field
perpendicular to the CuO2 planes disappears in the LTT phase. The shape of the
magnetization curves changes from the well known spin-flip type to a
weak-ferromagnet type. However, no spontaneous weak ferromagnetism is observed
even at very low temperatures, which seems to indicate that the interlayer
decoupling in our samples is not perfect. Nonetheless, a small fraction (<15%)
of the DM-moments can be remanently magnetized throughout the entire
antiferromagnetically ordered LTT/LTLO phase, i.e. for T<T_LT and x<0.02. It
appears that the remanent DM-moment is perpendicular to the CuO2 planes. For
magnetic field parallel to the CuO2 planes we find that the critical field of
the spin-flop transition decreases in the LTLO phase, which might indicate a
competition between different in-plane anisotropies. To study the Cu spin
magnetism in La2-x-yEuySrxCuO4, a careful analysis of the Van Vleck
paramagnetism of the Eu3+ ions was performed.Comment: 22 pages, 27 figure
An Over-Massive Black Hole in a Typical Star-Forming Galaxy, 2 Billion Years After the Big Bang
Supermassive black holes (SMBHs) and their host galaxies are generally
thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the
host galaxy mass in the present day. The radiation emitted from the growing
SMBH is expected to affect star formation throughout the host galaxy. The
relevance of this scenario at early cosmic epochs is not yet established. We
present spectroscopic observations of a galaxy at redshift z = 3.328, which
hosts an actively accreting, extremely massive BH, in its final stages of
growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy,
suggesting that it has grown much more efficiently than the host, contrary to
models of synchronized coevolution. The host galaxy is forming stars at an
intense rate, despite the presence of a SMBH-driven gas outflow.Comment: Author's version, including the main paper and the Supplementary
Materials (16+21 pages, 3+3 figures
P2P assisted streaming for low popularity VoD contents
The Video on Demand (VoD) service is becoming a dominant service in the telecommunication market due to the great convenience regarding the choice of content items and their independent viewing time. However, due to its high traffic demand nature, the VoD streaming systems are faced with the problem of huge amounts of traffic generated in the core of the network, especially for serving the requests for content items that are not in the top popularity range. Therefore, we propose a peer assisted VoD model that takes advantage of the clients unused uplink and storage capacity to serve requests for less popular items with the objective to keep the traffic on the periphery of the network, reduce the transport cost in the core of the network and make the system more scalable
Upper critical field pecularities of superconducting YNi2B2C and LuNi2B2C
We present new upper critical field Hc2(T) data in a broad temperature region
from 0.3K to Tc for LuNi2B2C and YNi2B2C single crystals with well
characterized low impurity scattering rates. The absolute values for all T, in
particular Hc2(0), and the sizeable positive curvature (PC) of Hc2(T) at high
and intermediate T are explained quantitatively within an effective two-band
model. The failure of the isotropic single band approach is discussed in
detail. Supported by de Haas van Alphen data, the superconductivity reveals
direct insight into details of the electronic structure. The observed maximal
PC near Tc gives strong evidence for clean limit type II superconductors.Comment: 4 pages, 2 figures, Phys. Rev. Lett. accepte
Interplay between carrier and impurity concentrations in annealed GaMnAs intrinsic anomalous Hall Effect
Investigating the scaling behavior of annealed GaMnAs anomalous
Hall coefficients, we note a universal crossover regime where the scaling
behavior changes from quadratic to linear, attributed to the anomalous Hall
Effect intrinsic and extrinsic origins, respectively. Furthermore, measured
anomalous Hall conductivities when properly scaled by carrier concentration
remain constant, equal to theoretically predicated values, spanning nearly a
decade in conductivity as well as over 100 K in T. Both the qualitative
and quantitative agreement confirms the validity of new equations of motion
including the Berry phase contributions as well as tunablility of the intrinsic
anomalous Hall Effect.Comment: 4 pages, 5 figure
Evidence for the formation of magnetic moments in the cuprate superconductor HgCuBaCaCuO below seen by NQR
We report pure zero field nuclear magnetic resonance (NQR) measurements on
the optimally doped three layer high--compounds HgBaCaCuO and
HgBaCaCuO(F) with 134 K. Above two Cu NQR line pairs are
observed in the spectra corresponding to the two inequivalent Cu lattice sites.
Below the Cu NQR spectra show additional lines leading to the extreme
broadened Cu NQR spectra at 4.2 K well known for the HgBaCaCuO compounds. The
spin-lattice relaxation curves follow a triple exponential function with
coefficients depend onto the saturation time (number of saturation pulses),
whereas the spin-spin relaxation curve is described by a single exponential
function. From the spin-lattice relaxation we deduced a complete removal of the
Kramers degeneracy of the Cu quadrupole indicating that the additional lines
are due to a Zeemann splitting of the Cu lines due to the spontaneous
formation of magnetic moments within the CuO layers. Below 140 K, the spectra
are well fitted by a number of 6 Cu line pairs. From the number of
the Cu lines, the position of the lines relative to each other and the complete
removal of the Kramers degeneracy we deduced an orientation of the magnetic
moments parallel to the symmetry axis of the electric field gradient tensor
with magnitudes of the order of 1000 G. We also discuss the possible
microscopic origin of the observed internal magnetic fields.Comment: 11 pages, 12 figure
Speckle-visibility spectroscopy: A tool to study time-varying dynamics
We describe a multispeckle dynamic light scattering technique capable of
resolving the motion of scattering sites in cases that this motion changes
systematically with time. The method is based on the visibility of the speckle
pattern formed by the scattered light as detected by a single exposure of a
digital camera. Whereas previous multispeckle methods rely on correlations
between images, here the connection with scattering site dynamics is made more
simply in terms of the variance of intensity among the pixels of the camera for
the specified exposure duration. The essence is that the speckle pattern is
more visible, i.e. the variance of detected intensity levels is greater, when
the dynamics of the scattering site motion is slow compared to the exposure
time of the camera. The theory for analyzing the moments of the spatial
intensity distribution in terms of the electric field autocorrelation is
presented. It is demonstrated for two well-understood samples, a colloidal
suspension of Brownian particles and a coarsening foam, where the dynamics can
be treated as stationary. However, the method is particularly appropriate for
samples in which the dynamics vary with time, either slowly or rapidly, limited
only by the exposure time fidelity of the camera. Potential applications range
from soft-glassy materials, to granular avalanches, to flowmetry of living
tissue.Comment: review - theory and experimen
- …
