45,833 research outputs found

    Stability of the Magnetic Monopole Condensate in three- and four-colour QCD

    Get PDF
    It is argued that the ground state of three- and four-colour QCD contains a monopole condensate, necessary for the dual Meissner effect to be the mechanism of confinement, and support its stability on the grounds that it gives the off-diagonal gluons an effective mass sufficient to remove the unstable ground state mode.Comment: jhep.cls, typos corrected, references added, some content delete

    Abelian Dominance in Wilson Loops

    Get PDF
    It has been conjectured that the Abelian projection of QCD is responsible for the confinement of color. Using a gauge independent definition of the Abelian projection which does {\it not} employ any gauge fixing, we provide a strong evidence for the Abelian dominance in Wilson loop integral. In specific we prove that the gauge potential which contributes to the Wilson loop integral is precisely the one restricted by the Abelian projection.Comment: 4 pages, no figure, revtex. Phys. Rev. D in pres

    Changing Face of the Extrasolar Giant Planet, HD 209458b

    Get PDF
    High-resolution atmospheric flow simulations of the tidally-locked extrasolar giant planet, HD 209458b, show large-scale spatio-temporal variability. This is in contrast to the simple, permanent day/night (i.e., hot/cold) picture. The planet's global circulation is characterized by a polar vortex in motion around each pole and a banded structure corresponding to ~3 broad zonal (east-west) jets. For very strong jets, the circulation-induced temperature difference between moving hot and cold regions can reach up to ~1000 K, suggesting that atmospheric variability could be observed in the planet's spectral and photometric signatures.Comment: 6 pages, 1 ps figure, 2 low-res color figures (JPEG). Figure 3 updated. Contact authors for hi-res versions of color figures. Accepted for publication in ApJ

    Color Reflection Invariance and Monopole Condensation in QCD

    Get PDF
    We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum of the one-loop effective action of SU(2) QCD, and point out a critical defect in the calculation of the functional determinant of the gluon loop in the SNO effective action. We prove that the gauge invariance, in particular the color reflection invariance, exclude the unstable tachyonic modes from the gluon loop integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl

    Local Ranking Problem on the BrowseGraph

    Full text link
    The "Local Ranking Problem" (LRP) is related to the computation of a centrality-like rank on a local graph, where the scores of the nodes could significantly differ from the ones computed on the global graph. Previous work has studied LRP on the hyperlink graph but never on the BrowseGraph, namely a graph where nodes are webpages and edges are browsing transitions. Recently, this graph has received more and more attention in many different tasks such as ranking, prediction and recommendation. However, a web-server has only the browsing traffic performed on its pages (local BrowseGraph) and, as a consequence, the local computation can lead to estimation errors, which hinders the increasing number of applications in the state of the art. Also, although the divergence between the local and global ranks has been measured, the possibility of estimating such divergence using only local knowledge has been mainly overlooked. These aspects are of great interest for online service providers who want to: (i) gauge their ability to correctly assess the importance of their resources only based on their local knowledge, and (ii) take into account real user browsing fluxes that better capture the actual user interest than the static hyperlink network. We study the LRP problem on a BrowseGraph from a large news provider, considering as subgraphs the aggregations of browsing traces of users coming from different domains. We show that the distance between rankings can be accurately predicted based only on structural information of the local graph, being able to achieve an average rank correlation as high as 0.8

    Emergence of canonical ensembles from pure quantum states

    Full text link
    We consider a system weakly interacting with a bath as a thermodynamic setting to establish a quantum foundation of statistical physics. It is shown that even if the composite system is initially in an arbitrary nonequilibrium pure quantum state, the unitary dynamics of a generic weak interaction almost always drives the subsystem into the canonical ensemble, in the usual sense of typicality. A crucial step is taken by assuming that the matrix elements of the interaction Hamiltonian have random phases, while their amplitudes are left unrestricted

    On Signatures of Atmospheric Features in Thermal Phase Curves of Hot Jupiters

    Full text link
    Turbulence is ubiquitous in Solar System planetary atmospheres. In hot Jupiter atmospheres, the combination of moderately slow rotation and thick pressure scale height may result in dynamical weather structures with unusually large, planetary-size scales. Using equivalent-barotropic, turbulent circulation models, we illustrate how such structures can generate a variety of features in the thermal phase curves of hot Jupiters, including phase shifts and deviations from periodicity. Such features may have been spotted in the recent infrared phase curve of HD 189733b. Despite inherent difficulties with the interpretation of disk-integrated quantities, phase curves promise to offer unique constraints on the nature of the circulation regime present on hot Jupiters.Comment: 22 pages, 6 figures, 1 table, accepted for publication in Ap

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM

    A QCD space-time analysis of quarkonium formation and evolution in hadronic collisions

    Get PDF
    The production of heavy quarkonium as QQbar bound-states in hadron-hadron collisions is considered within the framework of a space-time description, combining parton-cascade evolution with a coalescence model for bound-state formation. The `hard' production of the initial QQbar, directly or via gluon fragmentation and including both color-singlet and color-octet contributions, is calculated from the PQCD cross-sections. The subsequent development of the QQbar system is described within a space-time generalization of the DGLAP parton-evolution formalism in position- and momentum-space. The actual formation of the bound-states is accomplished through overlap of the QQbar pair and a spectrum of quarkonium wave-functions. This coalescence can only occur after sufficent gluon radiation reduces the QQbar relative velocity to a value commensurate with the non-relativistic kinematics of these bound systems. The presence of gluon participants in the cascade then is both necessary and leads to the natural inclusion of both color-singlet and color-octet mechanisms. The application of this approach to pp (ppbar) collisions from sqrt(s)= 30 GeV - 14 TeV reveals very decent agreement with available data from ISR and Tevatron - without the necessity of introducing fit parameters. Moreover, production probabilities are calculated for a complete spectrum of charmonium and bottonium states, with the relative significance compared to open charm (bottom) production. An analysis of the space-time development is carried through which sheds light on the relevance of gluon radiation and color-structure, suggesting a correponding experimental investigation.Comment: 37 pages including 16 postscript figure

    Theoretical framework of entangled-photon generation from biexcitons in nano-to-bulk crossover regime with planar geometry

    Full text link
    We have constructed a theoretical framework of the biexciton-resonant hyperparametric scattering for the pursuit of high-power and high-quality generation of entangled photon pairs. Our framework is applicable to nano-to-bulk crossover regime where the center-of-mass motion of excitons and biexcitons is confined. Material surroundings and the polarization correlation of generated photons can be considered. We have analyzed the entangled-photon generation from CuCl film, by which ultraviolet entangled-photon pairs are generated, and from dielectric microcavity embedding a CuCl layer. We have revealed that in the nano-to-bulk crossover regime we generally get a high performance from the viewpoint of statistical accuracy, and the generation efficiency can be enhanced by the optical cavity with maintaining the high performance. The nano-to-bulk crossover regime has a variety of degrees of freedom to tune the entangled-photon generation, and the scattering spectra explicitly reflect quantized exciton-photon coupled modes in the finite structure.Comment: 18 pages, 10 figure
    corecore