45,833 research outputs found
Stability of the Magnetic Monopole Condensate in three- and four-colour QCD
It is argued that the ground state of three- and four-colour QCD contains a
monopole condensate, necessary for the dual Meissner effect to be the mechanism
of confinement, and support its stability on the grounds that it gives the
off-diagonal gluons an effective mass sufficient to remove the unstable ground
state mode.Comment: jhep.cls, typos corrected, references added, some content delete
Abelian Dominance in Wilson Loops
It has been conjectured that the Abelian projection of QCD is responsible for
the confinement of color. Using a gauge independent definition of the Abelian
projection which does {\it not} employ any gauge fixing, we provide a strong
evidence for the Abelian dominance in Wilson loop integral. In specific we
prove that the gauge potential which contributes to the Wilson loop integral is
precisely the one restricted by the Abelian projection.Comment: 4 pages, no figure, revtex. Phys. Rev. D in pres
Changing Face of the Extrasolar Giant Planet, HD 209458b
High-resolution atmospheric flow simulations of the tidally-locked extrasolar
giant planet, HD 209458b, show large-scale spatio-temporal variability. This is
in contrast to the simple, permanent day/night (i.e., hot/cold) picture. The
planet's global circulation is characterized by a polar vortex in motion around
each pole and a banded structure corresponding to ~3 broad zonal (east-west)
jets. For very strong jets, the circulation-induced temperature difference
between moving hot and cold regions can reach up to ~1000 K, suggesting that
atmospheric variability could be observed in the planet's spectral and
photometric signatures.Comment: 6 pages, 1 ps figure, 2 low-res color figures (JPEG). Figure 3
updated. Contact authors for hi-res versions of color figures. Accepted for
publication in ApJ
Color Reflection Invariance and Monopole Condensation in QCD
We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum
of the one-loop effective action of SU(2) QCD, and point out a critical defect
in the calculation of the functional determinant of the gluon loop in the SNO
effective action. We prove that the gauge invariance, in particular the color
reflection invariance, exclude the unstable tachyonic modes from the gluon loop
integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl
Local Ranking Problem on the BrowseGraph
The "Local Ranking Problem" (LRP) is related to the computation of a
centrality-like rank on a local graph, where the scores of the nodes could
significantly differ from the ones computed on the global graph. Previous work
has studied LRP on the hyperlink graph but never on the BrowseGraph, namely a
graph where nodes are webpages and edges are browsing transitions. Recently,
this graph has received more and more attention in many different tasks such as
ranking, prediction and recommendation. However, a web-server has only the
browsing traffic performed on its pages (local BrowseGraph) and, as a
consequence, the local computation can lead to estimation errors, which hinders
the increasing number of applications in the state of the art. Also, although
the divergence between the local and global ranks has been measured, the
possibility of estimating such divergence using only local knowledge has been
mainly overlooked. These aspects are of great interest for online service
providers who want to: (i) gauge their ability to correctly assess the
importance of their resources only based on their local knowledge, and (ii)
take into account real user browsing fluxes that better capture the actual user
interest than the static hyperlink network. We study the LRP problem on a
BrowseGraph from a large news provider, considering as subgraphs the
aggregations of browsing traces of users coming from different domains. We show
that the distance between rankings can be accurately predicted based only on
structural information of the local graph, being able to achieve an average
rank correlation as high as 0.8
Emergence of canonical ensembles from pure quantum states
We consider a system weakly interacting with a bath as a thermodynamic
setting to establish a quantum foundation of statistical physics. It is shown
that even if the composite system is initially in an arbitrary nonequilibrium
pure quantum state, the unitary dynamics of a generic weak interaction almost
always drives the subsystem into the canonical ensemble, in the usual sense of
typicality. A crucial step is taken by assuming that the matrix elements of the
interaction Hamiltonian have random phases, while their amplitudes are left
unrestricted
On Signatures of Atmospheric Features in Thermal Phase Curves of Hot Jupiters
Turbulence is ubiquitous in Solar System planetary atmospheres. In hot
Jupiter atmospheres, the combination of moderately slow rotation and thick
pressure scale height may result in dynamical weather structures with unusually
large, planetary-size scales. Using equivalent-barotropic, turbulent
circulation models, we illustrate how such structures can generate a variety of
features in the thermal phase curves of hot Jupiters, including phase shifts
and deviations from periodicity. Such features may have been spotted in the
recent infrared phase curve of HD 189733b. Despite inherent difficulties with
the interpretation of disk-integrated quantities, phase curves promise to offer
unique constraints on the nature of the circulation regime present on hot
Jupiters.Comment: 22 pages, 6 figures, 1 table, accepted for publication in Ap
Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds
We investigate the relationship between the Lagrangian Floer superpotentials
for a toric orbifold and its toric crepant resolutions. More specifically, we
study an open string version of the crepant resolution conjecture (CRC) which
states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold
and that of its toric crepant resolution coincide after
analytic continuation of quantum parameters and a change of variables. Relating
this conjecture with the closed CRC, we find that the change of variable
formula which appears in closed CRC can be explained by relations between open
(orbifold) Gromov-Witten invariants. We also discover a geometric explanation
(in terms of virtual counting of stable orbi-discs) for the specialization of
quantum parameters to roots of unity which appears in Y. Ruan's original CRC
["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten
theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math.
Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective
spaces using an equality between open
and closed orbifold Gromov-Witten invariants. Along the way, we also prove an
open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version,
to appear in CM
A QCD space-time analysis of quarkonium formation and evolution in hadronic collisions
The production of heavy quarkonium as QQbar bound-states in hadron-hadron
collisions is considered within the framework of a space-time description,
combining parton-cascade evolution with a coalescence model for bound-state
formation. The `hard' production of the initial QQbar, directly or via gluon
fragmentation and including both color-singlet and color-octet contributions,
is calculated from the PQCD cross-sections. The subsequent development of the
QQbar system is described within a space-time generalization of the DGLAP
parton-evolution formalism in position- and momentum-space. The actual
formation of the bound-states is accomplished through overlap of the QQbar pair
and a spectrum of quarkonium wave-functions. This coalescence can only occur
after sufficent gluon radiation reduces the QQbar relative velocity to a value
commensurate with the non-relativistic kinematics of these bound systems. The
presence of gluon participants in the cascade then is both necessary and leads
to the natural inclusion of both color-singlet and color-octet mechanisms. The
application of this approach to pp (ppbar) collisions from sqrt(s)= 30 GeV - 14
TeV reveals very decent agreement with available data from ISR and Tevatron -
without the necessity of introducing fit parameters. Moreover, production
probabilities are calculated for a complete spectrum of charmonium and
bottonium states, with the relative significance compared to open charm
(bottom) production. An analysis of the space-time development is carried
through which sheds light on the relevance of gluon radiation and
color-structure, suggesting a correponding experimental investigation.Comment: 37 pages including 16 postscript figure
Theoretical framework of entangled-photon generation from biexcitons in nano-to-bulk crossover regime with planar geometry
We have constructed a theoretical framework of the biexciton-resonant
hyperparametric scattering for the pursuit of high-power and high-quality
generation of entangled photon pairs. Our framework is applicable to
nano-to-bulk crossover regime where the center-of-mass motion of excitons and
biexcitons is confined. Material surroundings and the polarization correlation
of generated photons can be considered. We have analyzed the entangled-photon
generation from CuCl film, by which ultraviolet entangled-photon pairs are
generated, and from dielectric microcavity embedding a CuCl layer. We have
revealed that in the nano-to-bulk crossover regime we generally get a high
performance from the viewpoint of statistical accuracy, and the generation
efficiency can be enhanced by the optical cavity with maintaining the high
performance. The nano-to-bulk crossover regime has a variety of degrees of
freedom to tune the entangled-photon generation, and the scattering spectra
explicitly reflect quantized exciton-photon coupled modes in the finite
structure.Comment: 18 pages, 10 figure
- …
