2,345 research outputs found
Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms
In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha 7 and alpha 4 beta 2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the therapeutic objectives in potential nicotinic drug treatments of neurodegenerative diseases.In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha 7 and alpha 4 beta 2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the therapeutic objectives in potential nicotinic drug treatments of neurodegenerative diseases
FGF-2/FGFR1 neurotrophic system expression level and its basal activation do not account for the age-dependent decline of precursor cell proliferation in the subventricular zone of rat brain.
It is largely accepted that neurogenesis in the adult brain decreases with age and reduced levels of local neurotrophic support is speculated to be a contributing factor. Among neurotrophic factors involved on neurogenesis, we focused our attention on the neurotrophic system fibroblast growth factor-2 (FGF-2) and its receptor FGFR1, a potent modulator of precursor cell proliferation. In the present work, we aimed to analyse if potential age-dependent changes of the FGF-2/FGFR1 neurotrophic system may give account for the age-dependent decline of precursor cell proliferation in the neurogenic region of the subventricular zone (SVZ) in the rat brain. Using in situ hybridization and western blotting procedures we examined FGF-2 and FGFR1 expression levels in the SVZ of 20-month-old rats as compared to young adult 3-month-old rats. The results showed that during aging the FGF-2 and its receptor expression levels, both as mRNA and protein, were unchanged in the SVZ. The levels of phosphorylated FGFR1 form did not show significant variations suggesting that also the level of receptor activation does not change during aging. No changes were also observed in the phosphorylation of two FGFR1 related proteins involved in intracellular signaling, the canonical extracellular signal-regulated kinase Erk1/2 and the phospholipase-C\u3b31. Additionally, we could show that also the proliferation rate of stem cells does not change during aging. Taken together, our results show that FGF-2/FGFR1 neurotrophic system expression level and its basal activation do not account for the age-dependent decline of precursor cell proliferation in the rat brain
Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family.
Fibroblast growth factor receptor 1 (FGFR1) is known to be activated by homodimerization in the presence of both the FGF agonist ligand and heparan sulfate glycosaminoglycan. FGFR1 homodimers in turn trigger a variety of downstream signaling cascades via autophosphorylation of tyrosine residues in the cytoplasmic domain of FGFR1. By means of Bioluminescence Energy Resonance Transfer (BRET) as a sign of FGFR1 homodimerization, we evaluated in HEK293T cells the effects of all known FGF agonist ligands on homodimer formation. A significant correlation between BRET(2) signaling and ERK1/2 phosphorylation was observed, leading to a further characterization of the binding and signaling properties of the FGF subfamilies. FGF agonist ligand-FGFR1 binding interactions appear as the main mechanism for the control of FGFR1 homodimerization and MAPK signaling which demonstrated a high correlation. The bioinformatic analysis demonstrates the interface of the two pro-triplets SSS (Ser-Ser-Ser) and YGS (Tyr-Gly-Ser) located in the extracellular and intracellular domain of the FGFR1. These pro-triplets are postulated participate in the FGFR1 homodimerization interface interaction. The findings also reveal that FGF agonist ligands within the same subfamily of the FGF gene family produced similar increases in FGFR1 homodimer formation and MAPK signaling. Thus, the evolutionary relationship within this gene family appears to have a distinct functional relevance
Enhancement of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity and depression
New findings show existence of FGFR1-5-HT1A heteroreceptor complexes in 5-HT nerve cells of the dorsal and median raphe nuclei of the rat midbrain and hippocampus. Synergistic receptor-receptor interactions in these receptor complexes indicated their enhancing role in hippocampal plasticity. The existence of FGFR1-5-HT1A heteroreceptor complexes also in midbrain raphe 5-HT nerve cells open up the possibility that antidepressant drugs by increasing extracellular 5-HT levels can cause an activation of the FGF-2/FGFR1 mechanism in these nerve cells as well. Therefore, the agonist modulation of the FGFR1-5-HT1A heteroreceptor complexes and their specific role is now determined in rat medullary raphe RN33B cells and in the caudal midline raphe area of the midbrain rich in 5-HT nerve cells. The combined i.c.v. treatment with FGF-2 and the 5-HT1A agonist 8-OHDPAT synergistically increased FGFR1 and ERK1/2 phosphorylation in the raphe midline area of the midbrain and in the RN33B cells. Cotreatment with FGF2 and the 5-HT1A agonist induced RN33B cell differentiation as seen from development of an increased number and length of extensions per cell and their increased 5-HT immunoreactivity. These signaling and differentiation events were dependent on the receptor interface since they were blocked by incubation with TMV but not by TMII of the 5-HT1A receptor. Taken together, the 5-HT1A autoreceptors by being part of a FGFR1-5-HT1A heteroreceptor complex in the midbrain raphe 5-HT nerve cells appears to have also a trophic role in the central 5-HT neuron systems besides playing a key role in reducing the firing of these neurons
Nervous system and computation.
none5Computational systems are useful in neuroscience in many ways. For instance, they may be used to construct maps of brain structure and activation, or to describe brain processes mathematically.Furthermore, they inspired a powerful theory of brain function, in which the brain is viewed as a system characterized by intrinsic computational activities or as a "computational information processor." Although many neuroscientists believe that neural systems really perform computations, some are more cautious about computationalism or reject it. Thus, does the brain really compute? Answering this question requires getting clear on a definition of computation that is able to draw a line between physical systems that compute and systems that do not, so that we can discern on which side of the line the brain (or parts of it) could fall. In order to shed some light on the role of computational processes in brain function, available neurobiological data will be summarized from the standpoint of a recently proposed taxonomy of notions of computation, with the aim of identifying which brain processes can be considered computational. The emerging picture shows the brain as a very peculiar system, in which genuine computational features act in concert with noncomputational dynamical processes, leading to continuous self-organization and remodeling under the action of external stimuli from the environment and from the rest of the organism.openD. Guidolin; G. Albertin; M. Guescini; K. Fuxe; L.F. Agnati LF.D., Guidolin; G., Albertin; Guescini, Michele; K., Fuxe; L. F. Agnati L., F
New Vistas on Communication Modes and Integrative Mechanisms of Chemical Signals and their Potential Clinical Impact
Analysis of trophic responses in lesioned brain: focus on basic fibroblast growth factor mechanisms
Localization of thioredoxin in the rat brain and functional implications
The immunoreactivity for thioredoxin, which catalyzes protein disulfide reductions, has previously been shown to exist in nerve cells and their axons. Here we demonstrate the localization of thioredoxin mRNA as revealed by in situ hybridization in the rat brain. The gene is expressed in nerve cells of a variety of brain regions, for example, the cerebral cortex, the piriform cortex, the medial preoptic area, the CA3/CA4 region of the hippocampal formation, the dentate gyrus, the paraventricular nucleus of the hypothalamus, the arcuate nucleus, the substantia nigra pars compacta, the locus coeruleus, the ependyma of the 4th ventricle, and the epithelial cells of the choroid plexus. This distribution implicates an important function in nerve cell metabolism, especially in regions with high energy demands and indicates a role of the choroid plexus in nerve cell protection from environmental influences. It was found that after mechanical injury induced by partial unilateral hemitransection the thioredoxin mRNA expression is upregulated in the lesioned area and spreads to the cortical hemispheres at the lesioned level. This induction suggests a function of thioredoxin in the regeneration machinery of the brain following mechanical injury and oxidative stress
Coxsackie-adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes
Objectives: One of the theories connecting enterovirus (EV) infection of human islets with type 1 diabetes (T1D) is the development of a fertile field in the islets. This implies induction of appropriate proteins for the viral replication such as the coxsackie–adenovirus receptor (CAR). The aim of this study was to investigate to what extent CAR is expressed in human islets of Langerhans, and what conditions that would change the expression.
Design: Immunohistochemistry for CAR was performed on paraffin-embedded pancreatic tissue from patients with T1D (n=9 recent onset T1D, n=4 long-standing T1D), islet autoantibody-positive individuals (n=14) and non-diabetic controls (n=24) individuals. The expression of CAR was also examined by reverse transcription PCR on microdissected islets (n=5), exocrine tissue (n=5) and on explanted islets infected with EV or exposed to chemokines produced by EV-infected islet cells.
Results: An increased frequency of patients with T1D and autoantibody-positive individuals expressed CAR in the pancreas (p<0.039). CAR staining was detected more frequently in pancreatic islets from patients with T1D and autoantibody-positive subjects (15/27) compared with (6/24) non-diabetic controls (p<0.033). Also in explanted islets cultured in UV-treated culture medium from coxsackievirus B (CBV)-1-infected islets, the expression of the CAR gene was increased compared with controls. Laser microdissection of pancreatic tissue revealed that CAR expression was 10-fold higher in endocrine compared with exocrine cells of the pancreas. CAR was also expressed in explanted islets and the expression level decreased with time in culture. CBV-1 infection of explanted islets clearly decreased the expression of CAR (p<0.05). In contrast, infection with echovirus 6 did not affect the expression of CAR.
Conclusions: CAR is expressed in pancreatic islets of patients with T1D and the expression level of CAR is increased in explanted islets exposed to proinflammatory cytokines/chemokines produced by infected islets. T1D is associated with increased levels of certain chemokines/cytokines in the islets and this might be the mechanism behind the increased expression of CAR in TID islets
- …
