5,363 research outputs found
Alternative Asymptotics and the Partially Linear Model with Many Regressors
Non-standard distributional approximations have received considerable
attention in recent years. They often provide more accurate approximations in
small samples, and theoretical improvements in some cases. This paper shows
that the seemingly unrelated "many instruments asymptotics" and "small
bandwidth asymptotics" share a common structure, where the object determining
the limiting distribution is a V-statistic with a remainder that is an
asymptotically normal degenerate U-statistic. We illustrate how this general
structure can be used to derive new results by obtaining a new asymptotic
distribution of a series estimator of the partially linear model when the
number of terms in the series approximation possibly grows as fast as the
sample size, which we call "many terms asymptotics"
Final Report: Wall Effects in Cavity Flows
The wall effects in cavity flows past an arbitrary two-dimensional body is investigated for both pure-drag and lifting cases based on an inviscid nonlinear flow theory. The over-all features of various theoretical flow models for inviscid cavity flows under the wall effects are discussed from the general momentum consideration in comparison with typical viscous, incompressible wake flows in a channel. In the case of pure drag cavity flows, three theoretical models in common use, namely, the open-wake, Riabouchinsky and re-entrant jet models, are applied to evaluate the solution. Methods of numerical computation are discussed for bodies of arbitrary shape, and are carried out in detail for wedges of all angles. The final numerical results are compared between the different flow models, and the differences pointed out. Further analysis of the results has led to development of several useful formulas for correcting the wall effect. In the lifting flow case, the wall effect on the pressure and hydrodynamic forces acting on arbitrary body is formulated for the choked cavity flow in a closed water tunnel of arbitrary shape, and computed for the flat plate with a finite cavity in a straight tunnel
A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix
This paper describes a simple method of calculating a heteroskedasticity and autocorrelation consistent covariance matrix that is positive semi-definite by construction. It also establishes consistency of the estimated covariance matrix under fairly general conditions.
Determining the Contribution of Epidermal Cell Shape to Petal Wettability Using Isogenic Antirrhinum Lines
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Nowhere minimal CR submanifolds and Levi-flat hypersurfaces
A local uniqueness property of holomorphic functions on real-analytic nowhere
minimal CR submanifolds of higher codimension is investigated. A sufficient
condition called almost minimality is given and studied. A weaker necessary
condition, being contained a possibly singular real-analytic Levi-flat
hypersurface is studied and characterized. This question is completely resolved
for algebraic submanifolds of codimension 2 and a sufficient condition for
noncontainment is given for non algebraic submanifolds. As a consequence, an
example of a submanifold of codimension 2, not biholomorphically equivalent to
an algebraic one, is given. We also investigate the structure of singularities
of Levi-flat hypersurfaces.Comment: 21 pages; conjecture 2.8 was removed in proof; to appear in J. Geom.
Ana
Singularity theory study of overdetermination in models for L-H transitions
Two dynamical models that have been proposed to describe transitions between
low and high confinement states (L-H transitions) in confined plasmas are
analysed using singularity theory and stability theory. It is shown that the
stationary-state bifurcation sets have qualitative properties identical to
standard normal forms for the pitchfork and transcritical bifurcations. The
analysis yields the codimension of the highest-order singularities, from which
we find that the unperturbed systems are overdetermined bifurcation problems
and derive appropriate universal unfoldings. Questions of mutual equivalence
and the character of the state transitions are addressed.Comment: Latex (Revtex) source + 13 small postscript figures. Revised versio
Can Reflection from Grains Diagnose the Albedo?
By radiation transfer models with a realistic power spectra of the projected
density distributions, we show that the optical properties of grains are poorly
constrained by observations of reflection nebulae. The ISM is known to be
hierarchically clumped from a variety of observations (molecules, H I,
far-infrared). Our models assume the albedo and phase parameter of the dust,
the radial optical depth of the sphere averaged over all directions, and random
distributions of the dust within the sphere. The outputs are the stellar
extinction, optical depth, and flux of scattered light as seen from various
viewing angles. Observations provide the extinction and scattered flux from a
particular direction.
Hierarchical geometry has a large effect on the flux of scattered light
emerging from a nebula for a particular extinction of the exciting star. There
is a very large spread in both scattered fluxes and extinctions for any
distribution of dust. Consequently, an observed stellar extinction and
scattered flux can be fitted by a wide range of albedos. With hierarchical
geometry it is not completely safe to determine even relative optical constants
from multiwavelength observations of the same reflection nebula. The geometry
effectively changes with wavelength as the opacity of the clumps varies. Limits
on the implications of observing the same object in various wavelengths are
discussed briefly.
Henry (2002) uses a recipe to determine the scattered flux from a star with a
given extinction. It is claimed to be independent of the geometry. It provides
considerably more scattering than our models, probably leading to an
underestimate of the grain albedos from the UV Diffuse Galactic Light.Comment: 27 pages, including 7 figures. Accepted by Ap
Star Formation Activity in the Galactic HII Complex S255-S257
We present results on the star-formation activity of an optically obscured
region containing an embedded cluster (S255-IR) and molecular gas between two
evolved HII regions S255 and S257. We have studied the complex using optical,
near-infrared (NIR) imaging, optical spectroscopy and radio continnum mapping
at 15 GHz, along with Spitzer-IRAC results. It is found that the main exciting
sources of the evolved HII regions S255 and S257 and the compact HII regions
associated with S255-IR are of O9.5 - B3 V nature, consistent with previous
observations. Our NIR observations reveal 109 likely young stellar object (YSO)
candidates in an area of ~ 4'.9 x 4'.9 centered on S255-IR, which include 69
new YSO candidates. Our observations increased the number of previously
identified YSOs in this region by 32%. To see the global star formation, we
constructed the V-I/V diagram for 51 optically identified IRAC YSOs in an area
of ~ 13' x 13' centered on S255-IR. We suggest that these YSOs have an
approximate age between 0.1 - 4 Myr, indicating a non-coeval star formation.
Using spectral energy distribution models, we constrained physical properties
and evolutionary status of 31 and 16 YSO candidates outside and inside the gas
ridge, respectively. The models suggest that the sources associated within the
gas ridge are of younger population (mean age ~ 1.2 Myr) than the sources
outside the gas ridge (mean age ~ 2.5 Myr). The positions of the young sources
inside the gas ridge at the interface of the HII regions S255 and S257, favor a
site of induced star formation.Comment: 46 pages, 14 figures, 5 tables. Accepted for publication in The
Astrophysical Journa
Star Formation and Young Population of the HII Complex Sh2-294
The Sh2-294 HII region ionized by a single B0V star features several infrared
excess sources, a photodissociation region, and also a group of reddened stars
at its border. The star formation scenario in the region seems to be quite
complex. In this paper, we present follow-up results of Sh2-294 HII region at
3.6, 4.5, 5.8, and 8.0 microns observed with the Spitzer Space Telescope
Infrared Array Camera (IRAC), coupled with H2 (2.12 microns) observation, to
characterize the young population of the region and to understand its star
formation history. We identified 36 young stellar object (YSO, Class I, Class
II and Class I/II) candidates using IRAC color-color diagrams. It is found that
Class I sources are preferentially located at the outskirts of the HII region
and associated with enhanced H2 emission; none of them are located near the
central cluster. Combining the optical to mid-infrared (MIR) photometry of the
YSO candidates and using the spectral energy distribution fitting models, we
constrained stellar parameters and the evolutionary status of 33 YSO
candidates. Most of them are interpreted by the model as low-mass (< 4 solar
masses) YSOs; however, we also detected a massive YSO (~9 solar masses) of
Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present
analysis suggests that the Class I sources are indeed younger population of the
region relative to Class II sources (age ~ 4.5 x 10^6 yr). We suggest that the
majority of the Class I sources, including the massive YSOs, are
second-generation stars of the region whose formation is possibly induced by
the expansion of the HII region powered by a ~ 4 x 10^6 yr B0 main-sequence
star.Comment: 12 pages, 7 figures, 2 tables. Accepted for publication in The
Astrophysical Journa
- …
