130,470 research outputs found
Lunar magnetization concentrations (MAGCONS) antipodal to young large impact basins
Electron reflection measurements from Apollo 15 and 16 subsatellites show that patches of strong surface magnetic fields ranging in size from less than about 7 km to greater than 500 km are distributed over the surface of the Moon. With the exception of a few regions, no obvious association to surface geology has been found. Researchers examined the antipodes of 23 winged impact basins for which electron reflection measurements are available. It was concluded that the apparent temporal variations for the basin antipodes may reflect real variations in the lunar magnetic field
Three-Layer Magnetoconvection
It is believed that some stars have two or more convection zones in close proximity near to the stellar photosphere. These zones are separated by convectively stable regions that are relatively narrow. Due to the close proximity of these regions it is important to construct mathematical models to understand the transport and mixing of passive and dynamic quantities. One key quantity of interest is a magnetic field, a dynamic vector quantity, that can drastically alter the convectively driven flows, and have an important role in coupling the different layers. In this paper we present the first investigation into the effect of an imposed magnetic field in such a geometry. We focus our attention on the effect of field strength and show that, while there are some similarities with results for magnetic field evolution in a single layer, new and interesting phenomena are also present in a three layer system
An MHD Model For Magnetar Giant Flares
Giant flares on soft gamma-ray repeaters that are thought to take place on
magnetars release enormous energy in a short time interval. Their power can be
explained by catastrophic instabilities occurring in the magnetic field
configuration and the subsequent magnetic reconnection. By analogy with the
coronal mass ejection (CME) events on the Sun, we develop a theoretical model
via an analytic approach for magnetar giant flares. In this model, the rotation
and/or displacement of the crust causes the field to twist and deform, leading
to flux rope formation in the magnetosphere and energy accumulation in the
related configuration. When the energy and helicity stored in the configuration
reach a threshold, the system loses its equilibrium, the flux rope is ejected
outward in a catastrophic way, and magnetic reconnection helps the catastrophe
develop to a plausible eruption. By taking SGR 1806 - 20 as an example, we
calculate the free magnetic energy released in such an eruptive process and
find that it is more than ergs, which is enough to power a giant
flare. The released free magnetic energy is converted into radiative energy,
kinetic energy and gravitational energy of the flux rope. We calculated the
light curves of the eruptive processes for the giant flares of SGR 1806 - 20,
SGR 0526-66 and SGR 1900+14, and compared them with the observational data. The
calculated light curves are in good agreement with the observed light curves of
giant flares.Comment: Accepted to Ap
Pressure induced superconductivity on the border of magnetic order in MnP
We report the discovery of superconductivity on the border of long-range
magnetic order in the itinerant-electron helimagnet MnP via the application of
high pressure. Superconductivity with Tsc~1 K emerges and exists merely near
the critical pressure Pc~8 GPa, where the long-range magnetic order just
vanishes. The present finding makes MnP the first Mn-based superconductor. The
close proximity of superconductivity to a magnetic instability suggests an
unconventional pairing mechanism. Moreover, the detailed analysis of the
normal-state transport properties evidenced non-Fermi-liquid behavior and the
dramatic enhancement of the quasi-particle effective mass near Pc associated
with the magnetic quantum fluctuations.Comment: 5 figure
Modeling radiation belt radial diffusion in ULF wave fields: 2. Estimating rates of radial diffusion using combined MHD and particle codes
[1] Quantifying radial transport of radiation belt electrons in ULF wave fields is essential for understanding the variability of the trapped relativistic electrons. To estimate the radial diffusion coefficients (DLL), we follow MeV electrons in realistic magnetospheric configurations and wave fields calculated from a global MHD code. We create idealized pressure-driven MHD simulations for controlled solar wind velocities (hereafter referred to as pressure-driven Vx simulations) with ULF waves that are comparable to GOES data under similar conditions, by driving the MHD code with synthetic pressure profiles that mimic the pressure variations of a particular solar wind velocity. The ULF wave amplitude, in both magnetic and electric fields, increases at larger radial distance and during intervals with higher solar wind velocity and pressure fluctuations. To calculate DLL as a function of solar wind velocity (Vx = 400 and 600 km/s), we follow 90 degree pitch angle electrons in magnetic and electric fields of the pressure-driven Vx simulations. DLL is higher at larger radial distance and for the case with higher solar wind velocity and pressure variations. Our simulated DLL values are relatively small compared to previous studies which used larger wave fields in their estimations. For comparison, we scale our DLL values to match the wave amplitudes of the previous studies with those of the idealized MHD simulations. After the scaling, our DLL values for Vx = 600 km/s are comparable to theDLL values derived from Polar measurements during nonstorm intervals. This demonstrates the use of MHD models to quantify the effect of pressure-driven ULF waves on radiation belt electrons and thus to differentiate the radial diffusive process from other mechanisms
Finding diamonds in the rough: Targeted Sub-threshold Search for Strongly-lensed Gravitational-wave Events
Strong gravitational lensing of gravitational waves can produce duplicate
signals separated in time with different amplitudes. We consider the case in
which strong lensing produces identifiable gravitational-wave events and weaker
sub-threshold signals hidden in the noise background. We present a search
method for the sub-threshold signals using reduced template banks targeting
specific confirmed gravitational-wave events. We apply the method to all events
from Advanced LIGO's first and second observing run O1/O2. Using GW150914 as an
example, we show that the method effectively reduces the noise background and
raises the significance of (near-) sub-threshold triggers. In the case of
GW150914, we can improve the sensitive distance by . Finally,
we present the top possible lensed candidates for O1/O2 gravitational-wave
events that passed our nominal significance threshold of False-Alarm-Rate days
- …
