1,254 research outputs found
Extremal limit of the regular charged black holes in nonlinear electrodynamics
The near horizon limit of the extreme nonlinear black hole is investigated.
It is shown that resulting geometry belongs to the AdS2xS2 class with different
modules of curvatures of subspaces and could be described in terms of the
Lambert functions. It is demonstrated that the considered class of Lagrangians
does not admit solutions of the Bertotti-Robinson type
Cold Plasma Dispersion Relations in the Vicinity of a Schwarzschild Black Hole Horizon
We apply the ADM 3+1 formalism to derive the general relativistic
magnetohydrodynamic equations for cold plasma in spatially flat Schwarzschild
metric. Respective perturbed equations are linearized for non-magnetized and
magnetized plasmas both in non-rotating and rotating backgrounds. These are
then Fourier analyzed and the corresponding dispersion relations are obtained.
These relations are discussed for the existence of waves with positive angular
frequency in the region near the horizon. Our results support the fact that no
information can be extracted from the Schwarzschild black hole. It is concluded
that negative phase velocity propagates in the rotating background whether the
black hole is rotating or non-rotating.Comment: 27 pages, 11 figures accepted for publication in Gen. Relat. & Gravi
The landscape of gifted and talented education in England and Wales: How are teachers implementing policy?
This is an Author's Accepted Manuscript of an article published in Research Papers in Education, 27(2), 167-186, 2012, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/02671522.2010.509514.This paper explores the evidence relating to how primary schools are responding to the ‘gifted and talented’ initiative in England and Wales. A questionnaire survey which invited both closed and open-ended responses was carried out with a national sample of primary schools. The survey indicated an increasing proportion of coordinators, compared with a survey carried out in 1996, were identifying their gifted and talented children as well as having associated school policies. However, the survey also highlighted a number of issues which need addressing if the initiative is to achieve its objective of providing the best possible educational opportunities for children. For example, it was found that a significant number of practitioners were not aware of the existence of the National Quality Standards for gifted and talented education, provided by the UK government in 2007, and the subject-specific criteria provided by the UK’s Curriculum Authority for identification and provision have been largely ignored. The process of identifying children to be placed on the ‘gifted and talented’ register seems haphazard and based on pragmatic reasons. Analysis of teachers’ responses also revealed a range of views and theoretical positioning held by them, which have implications for classroom practice. As the ‘gifted and talented’ initiative in the UK is entering a second decade, and yet more significant changes in policy are introduced, pertinent questions need to be raised and given consideration
On the accretion disc properties in eclipsing dwarf nova EM Cyg
In this paper we analyzed the behavior of the unusual dwarf nova EM Cyg using
the data obtained in April-October, 2007 in Vyhorlat observatory (Slovak
Republic) and in September, 2006 in Crimean Astrophysical Observatory
(Ukraine). During our observations EM Cyg has shown outbursts in every 15-40
days. Because on the light curves of EM Cyg the partial eclipse of an accretion
disc is observed we applied the eclipse mapping technique to reconstruct the
temperature distribution in eclipsed parts of the disc. Calculations of the
accretion rate in the system were made for the quiescent and the outburst
states of activity for different distances.Comment: 6 pages, 3 figures, accepted in Astrophysics and Space Scienc
Scalar hairy black holes and solitons in asymptotically flat spacetimes
A numerical analysis shows that a class of scalar-tensor theories of gravity
with a scalar field minimally and nonminimally coupled to the curvature allows
static and spherically symmetric black hole solutions with scalar-field hair in
asymptotically flat spacetimes. In the limit when the horizon radius of the
black hole tends to zero, regular scalar solitons are found. The asymptotically
flat solutions are obtained provided that the scalar potential of the
theory is not positive semidefinite and such that its local minimum is also a
zero of the potential, the scalar field settling asymptotically at that
minimum. The configurations for the minimal coupling case, although unstable
under spherically symmetric linear perturbations, are regular and thus can
serve as counterexamples to the no-scalar-hair conjecture. For the nonminimal
coupling case, the stability will be analyzed in a forthcoming paper.Comment: 7 pages, 10 postscript figures, file tex, new postscript figs. and
references added, stability analysis revisite
Population dynamics in compressible flows
Organisms often grow, migrate and compete in liquid environments, as well as
on solid surfaces. However, relatively little is known about what happens when
competing species are mixed and compressed by fluid turbulence. In these
lectures we review our recent work on population dynamics and population
genetics in compressible velocity fields of one and two dimensions. We discuss
why compressible turbulence is relevant for population dynamics in the ocean
and we consider cases both where the velocity field is turbulent and when it is
static. Furthermore, we investigate populations in terms of a continuos density
field and when the populations are treated via discrete particles. In the last
case we focus on the competition and fixation of one species compared to
anotherComment: 16 pages, talk delivered at the Geilo Winter School 201
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Disturbance, dispersal and marine assemblage structure: A case study from the nearshore Southern Ocean
Disturbance is a key factor in most natural environments and, globally, disturbance regimes are changing, driven by increased anthropogenic influences, including climate change. There is, however, still a lack of understanding about how disturbance interacts with species dispersal capacity to shape marine assemblage structure. We examined the impact of ice scour disturbance history (2009–2016) on the nearshore seafloor in a highly disturbed region of the Western Antarctic Peninsula by contrasting the response of two groups with different dispersal capacities: one consisting of high-dispersal species (mobile with pelagic larvae) and one of low-dispersal species (sessile with benthic larvae). Piecewise Structural Equation Models were constructed to test multi-factorial predictions of the underlying mechanisms, based on hypothesised responses to disturbance for the two groups. At least two or three disturbance factors, acting at different spatial scales, drove assemblage composition. A comparison between both high- and low-dispersal models demonstrated that these mechanisms are dispersal dependent. Disturbance should not be treated as a single metric, but should incorporate remote and direct disturbance events with consideration of taxa-dispersal and disturbance legacy. These modelling approaches can provide insights into how disturbance shapes assemblages in other disturbance regimes, such as fire-prone forests and trawl fisheries
Detection Limits for Super-Hubble Suppression of Causal Fluctuations
We investigate to what extent future microwave background experiments might
be able to detect a suppression of fluctuation power on large scales in flat
and open universe models. Such suppression would arise if fluctuations are
generated by causal processes, and a measurement of a small suppression scale
would be problematic for inflation models, but consistent with many defect
models. More speculatively, a measurement of a suppression scale of the order
of the present Hubble radius could provide independent evidence for a
fine-tuned inflation model leading to a low-density universe. We find that,
depending on the primordial power spectrum, a suppression scale modestly larger
than the visible Horizon can be detected, but that the detectability drops very
rapidly with increasing scale. For models with two periods of inflation, there
is essentially no possibility of detecting a causal suppression scale.Comment: 8 pages, 4 figures, revtex, In Press Physical Review D 200
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
- …
