1,691 research outputs found

    Collapsing strange quark matter in Vaidya geometry

    Get PDF
    Exact solutions of the gravitational field equations for a mixture of a null charged strange quark fluid and radiation are obtained in a Vaidya space-time. The conditions for the formation of a naked singularity are analyzed by considering the behavior of radial geodesics originating from the central singularity.Comment: 6 pages, no figure

    On the role of pressure anisotropy for relativistic stars admitting conformal motion

    Full text link
    We investigate the spacetime of anisotropic stars admitting conformal motion. The Einstein field equations are solved using different ansatz of the surface tension. In this investigation, we study two cases in details with the anisotropy as: [1] pt=nprp_t = n p_r [2] ptpr=18π(c1r2+c2)p_t - p_r = \frac{1}{8 \pi}(\frac{c_1}{r^2} + c_2) where, n, c1c_1 and c2c_2 are arbitrary constants. The solutions yield expressions of the physical quantities like pressure gradients and the mass.Comment: 21 pages, accepted for publication in 'Astrophysics and Space Science

    Contribution of pulsars to the gamma-ray background and their observation with the space telescopes GLAST and AGILE

    Full text link
    Luminosities and uxes of the expected population of galactic gamma-ray pulsars become foreseeable if physical distributions at birth and evolutive history are assigned. In this work we estimate the contribution of pulsar uxes to the gamma-ray background, which has been measured by the EGRET experiment on board of the CGRO. For pulsar luminosities we select some of the most important gamma-ray emission models, taking into account both polar cap and outer gap scenarios. We nd that this contribution strongly depends upon controversial neutron star birth properties. A comparison between our simulation results and EGRET data is presented for each model, nding an average contribution of about 10%. In addition, we perform the calculation of the number of new gamma-ray pulsars detectable by GLAST and AGILE, showing a remarkable di erence between the two classes of models. Finally, we suggest some improvements in the numerical code, including more sophisticated galactic m odels and di erent populations of pulsars like binaries, milliseconds, anomalous pulsars and magnetars.Comment: 6 pages, 6 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200

    Protection Against Cardiac Injury by Small Ca\u3csup\u3e2 +\u3c/sup\u3e-Sensitive K\u3csup\u3e+\u3c/sup\u3e Channels Identified in Guinea Pig Cardiac Inner Mitochondrial Membrane

    Get PDF
    We tested if small conductance, Ca2 +‐sensitive K+ channels (SKCa) precondition hearts against ischemia reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O2‐derived free radicals are required to initiate protection via SKCa channels, and, importantly, if SKCa channels are present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O2−), and m[Ca2 +] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SKCa and IKCa channel opener DCEBIO (DCEB) was given for 10 min and ended 20 min before IR. Either TBAP, a dismutator of O2−, NS8593, an antagonist of SKCa isoforms, or other KCa and KATP channel antagonists, were given before DCEB and before ischemia. DCEB treatment resulted in a 2-fold increase in LV pressure on reperfusion and a 2.5 fold decrease in infarct size vs. non-treated hearts associated with reduced O2− and m[Ca2 +], and more normalized NADH and FAD during IR. Only NS8593 and TBAP antagonized protection by DCEB. Localization of SKCa channels to mitochondria and IMM was evidenced by a) identification of purified mSKCa protein by Western blotting, immuno-histochemical staining, confocal microscopy, and immuno-gold electron microscopy, b) 2-D gel electrophoresis and mass spectroscopy of IMM protein, c) [Ca2 +]‐dependence of mSKCa channels in planar lipid bilayers, and d) matrix K+ influx induced by DCEB and blocked by SKCa antagonist UCL1684. This study shows that 1) SKCa channels are located and functional in IMM, 2) mSKCa channel opening by DCEB leads to protection that is O2−dependent, and 3) protection by DCEB is evident beginning during ischemia

    The pseudo scalar form factor of the nucleon, the sigma-like term, and the L0+L_0^+ amplitude for charged pion electro-production near threshold

    Get PDF
    The pseudo scalar form factor, which represents the pseudo scalar quark density distribution due to finite quark masses on the nucleon, is shown to manifest itself with the induced pseudo scalar form factor in the L0+L_0^+ amplitude for the charged pion electro-production. Both form factors show their own peculiar momentum dependence. Under the approximation on which the Goldberg-Treimann relation holds, a sum of both form factors' contributions accounts for the t-channel contribution in the charged pion electro-production near threshold.Comment: 10 page

    Cooling Properties of Cloudy Bag Strange Stars

    Full text link
    As the chiral symmetry is widely recognized as an important driver of the strong interaction dynamics, current strange stars models based on MIT bag models do not obey such symmetry. We investigate properties of bare strange stars using the Cloudy Bag Model, in which a pion cloud coupled to the quark-confining bag is introduced such that chiral symmetry is conserved. We find that in this model the decay of pions is a very efficient cooling way. In fact it can carry out most the thermal energy in a few milliseconds and directly convert them into 100MeV photons via pion decay. This may be a very efficient γ\gamma-ray burst mechanism. Furthermore, the cooling behavior may provide a possible way to distinguish a compact object between a neutron star, MIT strange star and Cloudy Bag strange star in observations.Comment: 23 pages, 14 figures, accepted by Astroparticle Physics, abstract appeared here has been shortene

    Classification of Effective Neutrino Mass Operators

    Get PDF
    We present a classification of SU(3) x SU(2) x U(1) gauge invariant \Delta L = 2 (L being lepton number) effective operators relevant for generating small Majorana neutrino masses. Operators of dimension up to 11 have been included in our analysis. This approach enables us to systematically identify interesting neutrino mass models. It is shown that many of the well-known models fall into this classification. In addition, a number of new models are proposed and their neutrino phenomenology is outlined. Of particular interest is a large class of models in which neutrinoless double beta decays arise at a lower order compared to the neutrino mass, making these decays accessible to the current round of experiments.Comment: 34 pages in RevTeX with 18 figure

    A Superspace Formulation of The BV Action for Higher Derivative Theories

    Full text link
    We first analyze the anti-BRST and double BRST structures of a certain higher derivative theory that has been known to possess BRST symmetry associated with its higher derivative structure. We discuss the invariance of this theory under shift symmetry in the Batalin Vilkovisky (BV) formalism. We show that the action for this theory can be written in a manifestly extended BRST invariant manner in superspace formalism using one Grassmann coordinate. It can also be written in a manifestly extended BRST invariant manner and on-shell manifestly extended anti-BRST invariant manner in superspace formalism using two Grassmann coordinates.Comment: accepted for publication in EPJ

    Product Groups, Discrete Symmetries, and Grand Unification

    Get PDF
    We study grand unified theories based on an SU(5)xSU(5) gauge group in which the GUT scale, M_{GUT}, is the VEV of an exact or approximate modulus, and in which fast proton decay is avoided through a combination of a large triplet mass and small triplet couplings. These features are achieved by discrete symmetries. In many of our models, M_{GUT} is generated naturally by the balance of higher dimension terms that lift the GUT modulus potential, and soft supersymmetry breaking masses. The theories often lead to interesting patterns of quark and lepton masses. We also discuss some distinctions between grand unified theories and string unification.Comment: 23 pages; no figures; revtex

    Doublet-Triplet Splitting and Fermion Masses with Extra Dimensions

    Get PDF
    The pseudo-Goldstone boson mechanism for the ``doublet-triplet splitting'' problem of the grand unified theory can be naturally implemented in the scenario with extra dimensions and branes. The two SU(6) global symmetries of the Higgs sector are located on two separate branes while the SU(6) gauge symmetry is in the bulk. After including several vector-like fields in the bulk, and allowing the most general interactions with their natural strength (including the higher dimensional ones which may be generated by gravity) which are consistent with the geometry, a realistic pattern of the Standard Model fermion masses and mixings can be naturally obtained without any flavor symmetry. Neutrino masses and mixings required for the solar and atmospheric neutrino problems can also be accommodated. The geometry of extra dimensions and branes provides another way to realize the absence of certain interactions (as required in the pseudo-Goldstone boson mechanism) or the smallness of some couplings (e.g., the Yukawa couplings between the fermions and the Higgs bosons), in addition to the usual symmetry arguments.Comment: 16 pages, 4 figures, LaTeX, references and some clarifying remarks added, to be published in Phys. Rev.
    corecore