839 research outputs found
Envelope Determinants of Equine Lentiviral Vaccine Protection
Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection. © 2013 Craigo et al
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove
Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease
During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS) structures, modifications in the cerebrospinal fluid (CSF) composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1), a protein reported with anti-viral effects, presente
Population mechanics: A mathematical framework to study T cell homeostasis
Unlike other cell types, T cells do not form spatially arranged tissues, but move independently throughout the body. Accordingly, the number of T cells in the organism does not depend on physical constraints imposed by the shape or size of specific organs. Instead, it is determined by competition for interleukins. From the perspective of classical population dynamics, competition for resources seems to be at odds with the observed high clone diversity, leading to the so-called diversity paradox. In this work we make use of population mechanics, a non-standard theoretical approach to T cell homeostasis that accounts for clone diversity as arising from competition for interleukins. The proposed models show that carrying capacities of T cell populations naturally emerge from the balance between interleukins production and consumption. These models also suggest remarkable functional differences in the maintenance of diversity in naïve and memory pools. In particular, the distribution of memory clones would be biased towards clones activated more recently, or responding to more aggressive pathogenic threats. In contrast, permanence of naïve T cell clones would be determined by their affinity for cognate antigens. From this viewpoint, positive and negative selection can be understood as mechanisms to maximize naïve T cell diversity
High-volume infiltration analgesia in bilateral hip arthroplasty: A randomized, double-blind placebo-controlled trial
Reduced morphine consumption and pain intensity with local infiltration analgesia (LIA) following total knee arthroplasty: A randomized double-blind study involving 48 patients
Background and purpose: Postoperative pain is often severe following total knee arthroplasty (TKA). We investigated the efficacy of local infiltration analgesia (LIA) technique, intra- and postoperatively.Methods: 48 patients undergoing TKA were randomized into 2 groups in a double-blind study. In group A, 400 mg ropivacaine, 30 mg ketorolac and 0.5 mg epinephrine were infiltrated periarticularly intra-operatively. In group P, no injections were given. At 21 hours postoperatively, 200 mg ropivacaine, 30 mg ketorolac and 0.1 mg epinephrine were injected intraarticularly in group A, and the same volume of saline was injected in group P. Patients were followed up for 3 months.Results: Median morphine consumption was lower in group A during 0-48 h: 18 (1-74) mg vs. 87 (36-160) mg in group P. Postoperative pain was lower at rest in group A during the first 27 h, and on movement during the first 48 h, except at 21 h. Time to fulfilling discharge criteria was shorter in group A than in group P; 3 (1-7) vs. 5 (2-8) days. Patient satisfaction was higher in group A compared to group P on day 1 and 7. The unbound venous blood concentration of ropivacaine was below systemic toxic blood concentrations. Interpretation: Local infiltration analgesia (LIA) technique provides excellent pain relief and lower morphine consumption following TKA, resulting in shorter time to home readiness and higher patient satisfaction. Side effects were few and systemic LA concentrations low.</p
A randomized, controlled trial comparing local infiltration analgesia with epidural infusion for total knee arthroplasty
Zika Virus Tissue and Blood Compartmentalization in Acute Infection of Rhesus Macaques.
Animal models of Zika virus (ZIKV) are needed to better understand tropism and pathogenesis and to test candidate vaccines and therapies to curtail the pandemic. Humans and rhesus macaques possess similar fetal development and placental biology that is not shared between humans and rodents. We inoculated 2 non-pregnant rhesus macaques with a 2015 Brazilian ZIKV strain. Consistent with most human infections, the animals experienced no clinical disease but developed short-lived plasma viremias that cleared as neutralizing antibody developed. In 1 animal, viral RNA (vRNA) could be detected longer in whole blood than in plasma. Despite no major histopathologic changes, many adult tissues contained vRNA 14 days post-infection with highest levels in hemolymphatic tissues. These observations warrant further studies to investigate ZIKV persistence and its potential clinical implications for transmission via blood products or tissue and organ transplants
- …
