792 research outputs found
3D-partition functions on the sphere: exact evaluation and mirror symmetry
We study N = 4 quiver theories on the three-sphere. We compute partition
functions using the localisation method by Kapustin et al. solving exactly the
matrix integrals at finite N, as functions of mass and Fayet-Iliopoulos
parameters. We find a simple explicit formula for the partition function of the
quiver tail T(SU(N)). This formula opens the way for the analysis of
star-shaped quivers and their mirrors (that are the Gaiotto-type theories
arising from M5 branes on punctured Riemann surfaces). We provide
non-perturbative checks of mirror symmetry for infinite classes of theories and
find the partition functions of the TN theory, the building block of
generalised quiver theories.Comment: 30 pages, 12 figures. v2: added references, minor change
The partition bundle of type A_{N-1} (2, 0) theory
Six-dimensional (2, 0) theory can be defined on a large class of
six-manifolds endowed with some additional topological and geometric data (i.e.
an orientation, a spin structure, a conformal structure, and an R-symmetry
bundle with connection). We discuss the nature of the object that generalizes
the partition function of a more conventional quantum theory. This object takes
its values in a certain complex vector space, which fits together into the
total space of a complex vector bundle (the `partition bundle') as the data on
the six-manifold is varied in its infinite-dimensional parameter space. In this
context, an important role is played by the middle-dimensional intermediate
Jacobian of the six-manifold endowed with some additional data (i.e. a
symplectic structure, a quadratic form, and a complex structure). We define a
certain hermitian vector bundle over this finite-dimensional parameter space.
The partition bundle is then given by the pullback of the latter bundle by the
map from the parameter space related to the six-manifold to the parameter space
related to the intermediate Jacobian.Comment: 15 pages. Minor changes, added reference
Bounds on 4D Conformal and Superconformal Field Theories
We derive general bounds on operator dimensions, central charges, and OPE
coefficients in 4D conformal and N=1 superconformal field theories. In any CFT
containing a scalar primary phi of dimension d we show that crossing symmetry
of implies a completely general lower bound on the central
charge c >= f_c(d). Similarly, in CFTs containing a complex scalar charged
under global symmetries, we bound a combination of symmetry current two-point
function coefficients tau^{IJ} and flavor charges. We extend these bounds to
N=1 superconformal theories by deriving the superconformal block expansions for
four-point functions of a chiral superfield Phi and its conjugate. In this case
we derive bounds on the OPE coefficients of scalar operators appearing in the
Phi x Phi* OPE, and show that there is an upper bound on the dimension of Phi*
Phi when dim(Phi) is close to 1. We also present even more stringent bounds on
c and tau^{IJ}. In supersymmetric gauge theories believed to flow to
superconformal fixed points one can use anomaly matching to explicitly check
whether these bounds are satisfied.Comment: 47 pages, 9 figures; V2: small corrections and clarification
Translation and Community in the work of Elizabeth Cary
Explores the role of female community within Elizabeth Cary\u27s translations and her play, The Tragedy of Mariam
Superconformal indices of three-dimensional theories related by mirror symmetry
Recently, Kim and Imamura and Yokoyama derived an exact formula for
superconformal indices in three-dimensional field theories. Using their
results, we prove analytically the equality of superconformal indices in some
U(1)-gauge group theories related by the mirror symmetry. The proofs are based
on the well known identities of the theory of -special functions. We also
suggest the general index formula taking into account the global
symmetry present for abelian theories.Comment: 17 pages; minor change
An E7 Surprise
We explore some curious implications of Seiberg duality for an SU(2)
four-dimensional gauge theory with eight chiral doublets. We argue that two
copies of the theory can be deformed by an exactly marginal quartic
superpotential so that they acquire an enhanced E7 flavor symmetry. We argue
that a single copy of the theory can be used to define an E7-invariant
superconformal boundary condition for a theory of 28 five-dimensional free
hypermultiplets. Finally, we derive similar statements for three-dimensional
gauge theories such as an SU(2) gauge theory with six chiral doublets or Nf=4
SQED.Comment: 27 page
Power calculations using exact data simulation: A useful tool for genetic study designs.
Statistical power calculations constitute an essential first step in the planning of scientific studies. If sufficient summary statistics are available, power calculations are in principle straightforward and computationally light. In designs, which comprise distinct groups (e.g., MZ & DZ twins), sufficient statistics can be calculated within each group, and analyzed in a multi-group model. However, when the number of possible groups is prohibitively large (say, in the hundreds), power calculations on the basis of the summary statistics become impractical. In that case, researchers may resort to Monte Carlo based power studies, which involve the simulation of hundreds or thousands of replicate samples for each specified set of population parameters. Here we present exact data simulation as a third method of power calculation. Exact data simulation involves a transformation of raw data so that the data fit the hypothesized model exactly. As in power calculation with summary statistics, exact data simulation is computationally light, while the number of groups in the analysis has little bearing on the practicality of the method. The method is applied to three genetic designs for illustrative purposes
Quivers, YBE and 3-manifolds
We study 4d superconformal indices for a large class of N=1 superconformal
quiver gauge theories realized combinatorially as a bipartite graph or a set of
"zig-zag paths" on a two-dimensional torus T^2. An exchange of loops, which we
call a "double Yang-Baxter move", gives the Seiberg duality of the gauge
theory, and the invariance of the index under the duality is translated into
the Yang-Baxter-type equation of a spin system defined on a "Z-invariant"
lattice on T^2. When we compactify the gauge theory to 3d, Higgs the theory and
then compactify further to 2d, the superconformal index reduces to an integral
of quantum/classical dilogarithm functions. The saddle point of this integral
unexpectedly reproduces the hyperbolic volume of a hyperbolic 3-manifold. The
3-manifold is obtained by gluing hyperbolic ideal polyhedra in H^3, each of
which could be thought of as a 3d lift of the faces of the 2d bipartite
graph.The same quantity is also related with the thermodynamic limit of the BPS
partition function, or equivalently the genus 0 topological string partition
function, on a toric Calabi-Yau manifold dual to quiver gauge theories. We also
comment on brane realization of our theories. This paper is a companion to
another paper summarizing the results.Comment: 61 pages, 16 figures; v2: typos correcte
5-dim Superconformal Index with Enhanced En Global Symmetry
The five-dimensional supersymmetric gauge theory with Sp(N)
gauge group and SO(2N_f) flavor symmetry describes the physics on N D4-branes
with D8-branes on top of a single O8 orientifold plane in Type I' theory.
This theory is known to be superconformal at the strong coupling limit with the
enhanced global symmetry for . In this work we calculate
the superconformal index on for the Sp(1) gauge theory by the
localization method and confirm such enhancement of the global symmetry at the
superconformal limit for to a few leading orders in the chemical
potential. Both perturbative and (anti)instanton contributions are present in
this calculation. For cases some issues related the pole structure of
the instanton calculation could not be resolved and here we could provide only
some suggestive answer for the leading contributions to the index. For the
Sp(N) case, similar issues related to the pole structure appear.Comment: 70 pages, references added, published versio
Network and Seiberg Duality
We define and study a new class of 4d N=1 superconformal quiver gauge
theories associated with a planar bipartite network. While UV description is
not unique due to Seiberg duality, we can classify the IR fixed points of the
theory by a permutation, or equivalently a cell of the totally non-negative
Grassmannian. The story is similar to a bipartite network on the torus
classified by a Newton polygon. We then generalize the network to a general
bordered Riemann surface and define IR SCFT from the geometric data of a
Riemann surface. We also comment on IR R-charges and superconformal indices of
our theories.Comment: 28 pages, 28 figures; v2: minor correction
- …
